974 resultados para YAG ROD LASER
Resumo:
A simple mirror holder which permits the use of locally damaged laser morrors by allowing the undamaged areas of the reflector to be aligned along the laser optic axis is described. The mirror holder has an eccentric step for housing the mirror and a concentric aperture through which the undamaged surface of the reflector is utilised. By varying the eccentricity and by rotating the mirror inside the step the entire surface area of the reflector can be used successively.
Resumo:
We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlén equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilises direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially non-homogenous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement.
Resumo:
Spherical and rod like nanocrystalline Nd2O3 phosphors have been prepared by solution combustion and hydrothermal methods respectively The Powder X-ray diffraction (PXRD) results confirm that hexagonal A-type Nd2O3 has been obtained with calcination at 900 C for 3 h and the lattice parameters have been evaluated by Rietveld refinement Surface morphology of Nd2O3 phosphors show the formation of nanorods in hydrothermal synthesis whereas spherical particles in combustion method TEM results also confirm the same Raman studies show major peaks which are assigned to F-g and combination of A(g) + E-g modes The PL spectrum shows a series of emission bands at similar to 326-373 nm (UV) 421-485 nm (blue) 529-542 nm (green) and 622 nm (red) The UV blue green and red emission in the PL spectrum indicates that Nd2O3 nanocrystals are promising for high performance materials and white light emitting diodes (LEDs) (C) 2010 Elsevier B V All rights reserved
Resumo:
In benzene solution, C60 and C70 interact weakly in the ground state with amines having favourable oxidation potentials. Picosecond time-resolved absorption measurements show that on photoexcilation, the weak complexes undergo charge separation to produce ion pairs which in turn undergo fast geminate recombination either to produce the triplet state of the fullerenes or give back the ground slate of the complex, depending on the oxidation potential of the amine. Free-ion yield is generally negligible.
Resumo:
A technique for fabrication of thin-film circuits for microwave integrated circuit (MIC) application is presented. This low-cost fabrication technique utilizes laser direct write of copper patterns on alumina substrates. The method obviates the need for photomasks and photolithography. The film deposition mechanism, deposit film analysis, and MIC fabrication sequence are presented. Performance evaluation of MICs fabricated using this technique is also included
Resumo:
Degenerate pump-probe reflectivity experiments have been performed on a single crystal of bismuth telluride (Bi2Te3) as a function of sample temperature (3 K to 296 K) and pump intensity using similar to 50 femtosecond laser pulses with central photon energy of 1.57 eV. The time-resolved reflectivity data show two coherently generated totally symmetric A(1g) modes at 1.85 THz and 3.6 THz at 296 K which blue-shift to 1.9 THz and 4.02 THz, respectively, at 3 K. At high photoexcited carrier density of similar to 1.7 x 10(21) cm(-3), the phonon mode at 4.02 THz is two orders of magnitude higher positively chirped (i.e the phonon time period decreases with increasing delay time between the pump and the probe pulses) than the lower-frequency mode at 1.9 THz. The chirp parameter, beta is shown to be inversely varying with temperature. The time evolution of these modes is studied using continuous-wavelet transform of the time-resolved reflectivity data. Copyright (C) EPLA, 2010
Resumo:
Ultraviolet radiation has been generated by tangentially phase-matched sum-frequency mixing in biaxial L-arginine phosphate (LAP) crystal for the first time using Nd:YAG output at 1064 nm and Rh 6G dye laser output at 560 nm as the two input sources. Characterization has also been made of such a cheap, biaxial crystal for its possible use in devices for tangentially phase-matched short wavelength generation. If the crystal is of proper cut, thickness and quality so that its maximum capability can be exploited it can replace the potassium dihydrogen phosphate (KDP) group of crystals for various applications.
Resumo:
Epitaxial LaNiO3(LNO) thin films on LaAlO3(LAO), SrTiO3(STO), and YSZ are grown by pulsed laser deposition method at 350 mTorr oxygen partial pressure and 700 °C substrate temperature. As‐deposited LNO films are metallic down to 10 K. c‐axis oriented YBa2Cu3O7 (YBCO) films were grown on LNO/LAO as well as LNO/STO surfaces without affecting superconducting transition temperature of YBCO. Textured LNO thin films were grown on c‐axis oriented YBCO/STO and YBCO/YSZ . Transport measurements of these bilayer films showed that LNO is a good metallic contact material for YBCO.
Resumo:
A computer-controlled laser writing system for optical integrated circuits and data storage is described. The system is characterized by holographic (649F) and high-resolution plates. A minimum linewidth of 2.5 mum is obtained by controlling the system parameters. We show that this system can also be used for data storage applications.
Resumo:
Analysis of gas-particle nozzle flow is carried out with attention to the effect of dust particles on the vibrational relaxation phenomena and consequent effects on the gain of a gasdynamic laser. The phase nonequilibrium between the gas mixture and the particles during the nozzle expansion process is taken into account simultaneously. The governing equations of the two-phase nozzle flow have been transformed into similar form, and general correlating parameters have been obtained. It is shown from the present analysis that the particles present in the mixture affect the optimum gain obtainable from a gasdynamic laser adversely, and the effect depends on the size and loading of the particles in the mixture.
Resumo:
Theoretical analysis of internal frequency doubling in actively mode locked broadband solid state lasers is presented. The analysis is used to study the dependence of mode locked pulsewidth on the second harmonic conversion efficiency, the modulation depth, and the tuning element bandwidth in an AM mode locked Ti: sapphire laser. The results are presented in the form of graphs.
Resumo:
A molecule having a ketone group between two thiophene groups was synthesized. Presence of alternating electron donating and accepting moieties gives this material a donor-acceptor-donor (DAD) architecture. PolyDAD was synthesized from DAD monomer by oxidative polymerization. Device quality films of polyDAD were fabricated using pulsed laser deposition technique. X-ray photoelectron spectroscopy (XPS) and fourier transform infrared spectra (FTIR) data of both as synthesized and film indicate the material does not degrade during ablation. Optical band gap was determined to be about 1.45 eV. Four orders of magnitude increase in conductivity was observed from as synthesized to pulsed laser deposition (PLD) fabricated film of polyDAD. Annealing of polyDAD films increase conductivity, indicating better ordering of the molecules upon heating. Rectifying devices were fabricated from polyDAD, and preliminary results are discussed.