968 resultados para Water Transport
Resumo:
A photometric procedure for the determination of ClO(-) in tap water employing a miniaturized multicommuted flow analysis setup and an LED-based photometer is described. The analytical procedure was implemented using leucocrystal violet (LCV; 4,4', 4 ''-methylidynetris (N, N-dimethylaniline), C(25)H(31)N(3)) as a chromogenic reagent. Solenoid micropumps employed for solutions propelling were assembled together with the photometer in order to compose a compact unit of small dimensions. After control variables optimization, the system was applied for the determination of ClO(-) in samples of tap water, and aiming accuracy assessment samples were also analyzed using an independent method. Applying the paired t-test between results obtained using both methods, no significant difference at the 95% confidence level was observed. Other useful features include low reagent consumption, 2.4 mu g of LCV per determination, a linear response ranging from 0.02 up to 2.0 mg L(-1) ClO(-), a relative standard deviation of 1.0% (n = 11) for samples containing 0.2 mg L(-1) ClO(-), a detection limit of 6.0 mu g L(-1) ClO(-), a sampling throughput of 84 determinations per hour, and a waste generation of 432 mu L per determination.
Resumo:
Temperature-dependent electrical resistance in quasi-one-dimensional Li(0.9)Mo(6)O(17) is described by two Luttinger liquid anomalous exponents alpha, each associated with a distinct one dimensional band. The band with alpha < 1 is argued to crossover to a higher dimension below the temperature T(M'), leading to superconductivity. Disorder and magnetic fields are shown to induce the Bose metal behavior in this bulk compound.
Resumo:
The feasibility of using constructed wetlands (CWs) for the mitigation of pesticide runoff has been studied in the last decade. However, a lack of related data was verified when subsurface flow constructed wetlands (SSF CWs) are considered for this purpose. In the present work, SSF CWs were submitted to continuous ametryn addition and evaluated during an I I-week period, with the aim of determining the feasibility of these systems for mitigation of contaminated water. Ametryn was not added to one CW cell in order to provide a control for the experiments. Monitoring of treatment performance was executed by standard water quality parameters, ametryn chromatography quantification and macrophyte (Typha latifolia L) nutritional and agronomic property analysis. Results indicated that 39% of the total initially added amount of ametryn was removed, transferred or transformed. Herbicide metabolism and mineralisation were carried out by chemical and biological mechanisms. No statistic differences were observed in nutritional contents found in the T. latifolia crops of the CWs after the experimental period. Moreover, the biomass production (one valuable source of renewable energy) was equal to 3.3 t.ha(-1) (dry matter) in wetland cells. It was concluded that constructed wetland systems are capable of mitigating water contaminated with ametryn, acting as buffer filters between the emission sources and the downstream superficial water bodies.
Resumo:
A considerable portion of Brazil's commercial eucalypt plantations is located in areas Subjected to periods of water deficit and grown in soils with low natural fertility, particularly poor In potassium. Potassium is influential in controlling water relations of plants. The objective of this study was to verify the influence of potassium fertilization and soil water potential (psi(w)) oil the dry matter production and oil water relations Of eucalypt seedlings grown under greenhouse conditions. the experimental units were arranged in 4x4x2 randomized blocks factorial design, as follow: four species of Eucalyptus (Eucalyptus grandis, Eucalyptus urophylla, Eucalyptus camaldulensis and hybrid Eucalyptus grandis x Eucalyptus urophylla), four dosages of K (0, 50, 100 and 200 mg dm(-3)) and two soil water potentials (-0.01 M Pa and -0.1 M Pa). Plastic containers with 15 cm diameter and 18 cm height, with Styrofoam base, containing 3.0 dm(3) of soil and two plants per container were used. Soil water potential was kept at -0.01 MPa for 40 days after seeding. Afterward, the experimental units were divided into two groups: in one group the potential was kept at 0.01 MPa, and in the other one, at -0.10 MPa. Sol I water potential was control led gravimetrically twice a day with water replacement until the desired potential was reestablished. A week before harvesting, the leaf water potential (psi), the photosynthetic rate (A), the stomatal conductance (gs) and the transpiration rate were evaluated. The last week before harvesting, the mass of the containers was recorded daily before watering to determine the consumption of water by the plants. After harvesting, total dry matter and leaf area were evaluated. the data were Submitted to analysis of variance, to Tukey's tests and regression analyses. The application of K influenced A, gs and the transpiration rate. Plants deficient in K showed lower A and higher Us and transpiration rates. There were no statistical differences in A, gs and transpiration rates ill plants with and Without water deficit. The addition of K reduced the consumption of water per unit of leaf area and, in general, plants submitted to water deficit presented a lower consumption of water.
Resumo:
Premise of the study: Dioscorea alata L. is one of the most widely distributed species of the genus in the humid and semihumid tropics and is associated with traditional agriculture. Only a few microsatellite markers have been developed so far for this and other Dioscorea species. Methods and Results: We isolated 14 codominant polymorphic microsatellite markers using a microsatellite-enriched genomic library technique. Ten microsatellite loci were selected, and 80 D. alata accessions from different regions in Brazil were evaluated with nine polymorphic loci. The polymorphism information content (PIC) varied from 0.39 to 0.78 and the power discrimination (PD) ranged from 0.15 to 0.91. Six of the markers showed transferability for the species D. bulbifera, D. cayenensis-D. rotundata, and D. trifida. Conclusions: The SSR markers obtained are an important tool for further studies aiming to characterize the genetic diversity in D. alata and other Dioscorea spp. accessions.
Resumo:
Purpose. Histological aspects were considered in order to evaluate the in vivo photoprotective effect of a w/o microemulsion containing quercetin against UVB irradiation-induced dermal damages. The toxicity in cell culture and the potential skin irritation resulting from topical application of this formulation were investigated. Methods. Mouse dorsal surfaces were treated topically with 300 mg of the unloaded and quercetin-loaded (0.3%, w/w) microemulsions before and after exposure to UVB (2.87 J/cm(2)) irradiation. The untreated control groups irradiated and non-irradiated were also evaluated. UVB-induced histopathological changes as well as the photoprotective effect of this formulation were evaluated considering the parameters of infiltration of inflammatory cells, epidermis thickening (basale and spinosum layers) and collagen and elastic fiber contents. The cytotoxicity of the reported formulation was evaluated in L929 mice fibroblasts by MTT assay and the skin irritation was investigated after topical application of both unloaded and quercetin-loaded microemulsions once a day for 15 days. Results. The results demonstrated that the w/o microemulsion containing quercetin reduced the incidence of histological skin alterations, mainly the connective-tissue damage, induced by exposure to UVB irradiation. This suggests that protective effects of this formulation against UV-induced responses are not secondary to the interference of UV transmission (i.e., blocking the UVB radiation from being absorbed by the skin), as is usually implied with UVB absorbers and sunscreens, but is instead due to different biological effects of this flavonoid. Furthermore, by evaluating the cytotoxic effect on L929 cells and histological aspects such as infiltration of inflammatory cells and epidermis thickness of hairless mice, the present study also demonstrated the lack of toxicity of the proposed system. Conclusion. Based on these mice models, a detailed characterization of the w/o microemulsion incorporating quercetin effects as a photochemoprotective agent on human skin is presented.
Resumo:
We introduce the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS). CATT-BRAMS is an on-line transport model fully consistent with the simulated atmospheric dynamics. Emission sources from biomass burning and urban-industrial-vehicular activities for trace gases and from biomass burning aerosol particles are obtained from several published datasets and remote sensing information. The tracer and aerosol mass concentration prognostics include the effects of sub-grid scale turbulence in the planetary boundary layer, convective transport by shallow and deep moist convection, wet and dry deposition, and plume rise associated with vegetation fires in addition to the grid scale transport. The radiation parameterization takes into account the interaction between the simulated biomass burning aerosol particles and short and long wave radiation. The atmospheric model BRAMS is based on the Regional Atmospheric Modeling System (RAMS), with several improvements associated with cumulus convection representation, soil moisture initialization and surface scheme tuned for the tropics, among others. In this paper the CATT-BRAMS model is used to simulate carbon monoxide and particulate material (PM(2.5)) surface fluxes and atmospheric transport during the 2002 LBA field campaigns, conducted during the transition from the dry to wet season in the southwest Amazon Basin. Model evaluation is addressed with comparisons between model results and near surface, radiosondes and airborne measurements performed during the field campaign, as well as remote sensing derived products. We show the matching of emissions strengths to observed carbon monoxide in the LBA campaign. A relatively good comparison to the MOPITT data, in spite of the fact that MOPITT a priori assumptions imply several difficulties, is also obtained.
Resumo:
We describe an estimation technique for biomass burning emissions in South America based on a combination of remote-sensing fire products and field observations, the Brazilian Biomass Burning Emission Model (3BEM). For each fire pixel detected by remote sensing, the mass of the emitted tracer is calculated based on field observations of fire properties related to the type of vegetation burning. The burnt area is estimated from the instantaneous fire size retrieved by remote sensing, when available, or from statistical properties of the burn scars. The sources are then spatially and temporally distributed and assimilated daily by the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) in order to perform the prognosis of related tracer concentrations. Three other biomass burning inventories, including GFEDv2 and EDGAR, are simultaneously used to compare the emission strength in terms of the resultant tracer distribution. We also assess the effect of using the daily time resolution of fire emissions by including runs with monthly-averaged emissions. We evaluate the performance of the model using the different emission estimation techniques by comparing the model results with direct measurements of carbon monoxide both near-surface and airborne, as well as remote sensing derived products. The model results obtained using the 3BEM methodology of estimation introduced in this paper show relatively good agreement with the direct measurements and MOPITT data product, suggesting the reliability of the model at local to regional scales.
Resumo:
Through long-range transport of dust, the North-African desert supplies essential minerals to the Amazon rain forest. Since North African dust reaches South America mostly during the Northern Hemisphere winter, the dust sources active during winter are the main contributors to the forest. Given that the Bod,l, depression area in southwestern Chad is the main winter dust source, a close link is expected between the Bod,l, emission patterns and volumes and the mineral supply flux to the Amazon. Until now, the particular link between the Bod,l, and the Amazon forest was based on sparse satellite measurements and modeling studies. In this study, we combine a detailed analysis of space-borne and ground data with reanalysis model data and surface measurements taken in the central Amazon during the Amazonian Aerosol Characterization Experiment (AMAZE-08) in order to explore the validity and the nature of the proposed link between the Bod,l, depression and the Amazon forest. This case study follows the dust events of 11-16 and 18-27 February 2008, from the emission in the Bod,l, over West Africa (most likely with contribution from other dust sources in the region) the crossing of the Atlantic Ocean, to the observed effects above the Amazon canopy about 10 days after the emission. The dust was lifted by surface winds stronger than 14 m s(-1), usually starting early in the morning. The lofted dust, mixed with biomass burning aerosols over Nigeria, was transported over the Atlantic Ocean, and arrived over the South American continent. The top of the aerosol layer reached above 3 km, and the bottom merged with the boundary layer. The arrival of the dusty air parcel over the Amazon forest increased the average concentration of aerosol crustal elements by an order of magnitude.
Resumo:
Nontwist systems, common in the dynamical descriptions of fluids and plasmas, possess a shearless curve with a concomitant transport barrier that eliminates or reduces chaotic transport, even after its breakdown. In order to investigate the transport properties of nontwist systems, we analyze the barrier escape time and barrier transmissivity for the standard nontwist map, a paradigm of such systems. We interpret the sensitive dependence of these quantities upon map parameters by investigating chaotic orbit stickiness and the associated role played by the dominant crossing of stable and unstable manifolds. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3247349]
Resumo:
Investigations of chaotic particle transport by drift waves propagating in the edge plasma of tokamaks with poloidal zonal flow are described. For large aspect ratio tokamaks, the influence of radial electric field profiles on convective cells and transport barriers, created by the nonlinear interaction between the poloidal flow and resonant waves, is investigated. For equilibria with edge shear flow, particle transport is seen to be reduced when the electric field shear is reversed. The transport reduction is attributed to the robust invariant tori that occur in nontwist Hamiltonian systems. This mechanism is proposed as an explanation for the transport reduction in Tokamak Chauffage Alfven Bresilien [R. M. O. Galvao , Plasma Phys. Controlled Fusion 43, 1181 (2001)] for discharges with a biased electrode at the plasma edge.
Resumo:
Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil. The CLAIM-3D (3-Dimensional Cloud Aerosol Interaction Mission) satellite concept proposed here combines several techniques to simultaneously measure the vertical profile of cloud microphysics, thermodynamic phase, brightness temperature, and aerosol amount and type in the neighborhood of the clouds. The wide wavelength range, and the use of multi-angle polarization measurements proposed for this mission allow us to estimate the availability and characteristics of aerosol particles acting as cloud condensation nuclei, and their effects on the cloud microphysical structure. These results can provide unprecedented details on the response of cloud droplet microphysics to natural and anthropogenic aerosols in the size scale where the interaction really happens.
Resumo:
Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D(p)) ranging from 0.03 to 0.10 mu m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC(a), and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC(e)) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D(p) < 2.5 mu m: average 59.8 mu g m(-3)) were higher than coarse aerosols (D(p) > 2.5 mu m: 4.1 mu g m(-3)). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC(e), comprised more than 90% to the total aerosol mass. Concentrations of EC(a) (estimated by thermal analysis with a correction for charring) and BC(e) (estimated by LTM) averaged 5.2 +/- 1.3 and 3.1 +/- 0.8 mu g m(-3), respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption Angstrom exponent of particles in the size range of 0.1 to 1.0 mu m from >2.0 to approximately 1.2. The size-resolved BC(e) measured by the LTM showed a clear maximum between 0.4 and 0.6 mu m in diameter. The concentrations of OC and BC(e) varied diurnally during the dry period, and this variation is related to diurnal changes in boundary layer thickness and in fire frequency.
Resumo:
In this paper we investigate the dynamic properties of the minimal Bell-Lavis (BL) water model and their relation to the thermodynamic anomalies. The BL model is defined on a triangular lattice in which water molecules are represented by particles with three symmetric bonding arms interacting through van der Waals and hydrogen bonds. We have studied the model diffusivity in different regions of the phase diagram through Monte Carlo simulations. Our results show that the model displays a region of anomalous diffusion which lies inside the region of anomalous density, englobed by the line of temperatures of maximum density. Further, we have found that the diffusivity undergoes a dynamic transition which may be classified as fragile-to-strong transition at the critical line only at low pressures. At higher densities, no dynamic transition is seen on crossing the critical line. Thus evidence from this study is that relation of dynamic transitions to criticality may be discarded. (C) 2010 American Institute of Physics. [doi:10.1063/1.3479001]
Resumo:
The experimental vertical electron detachment energy (VEDE) of aqueous fluoride, [F(-)(H(2)O)], is approximately 9.8 eV, but spectral assignment is complicated by interference between F(-) 2p and H(2)O 1b(1) orbitals. The electronic structure of [F(-)(H(2)O)] is analyzed with Monte Carlo and ab initio quantum-mechanical calculations. Electron-propagator calculations in the partial third-order approximation yield a VEDE of 9.4 eV. None of the Dyson orbitals corresponding to valence VEDEs consists primarily of F 2p functions. These results and ground-state atomic charges indicate that the final, neutral state is more appropriately described as [F(-)(H(2)O)(+)] than as [F(H(2)O)]. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3431081]