773 resultados para Tripartite entanglement
Resumo:
This dissertation presents a detailed study in exploring quantum correlations of lights in macroscopic environments. We have explored quantum correlations of single photons, weak coherent states, and polarization-correlated/polarization-entangled photons in macroscopic environments. These included macroscopic mirrors, macroscopic photon number, spatially separated observers, noisy photons source and propagation medium with loss or disturbances. We proposed a measurement scheme for observing quantum correlations and entanglement in the spatial properties of two macroscopic mirrors using single photons spatial compass state. We explored the phase space distribution features of spatial compass states, such as chessboard pattern by using the Wigner function. The displacement and tilt correlations of the two mirrors were manifested through the propensities of the compass states. This technique can be used to extract Einstein-Podolsky-Rosen correlations (EPR) of the two mirrors. We then formulated the discrete-like property of the propensity Pb(m,n), which can be used to explore environmental perturbed quantum jumps of the EPR correlations in phase space. With single photons spatial compass state, the variances in position and momentum are much smaller than standard quantum limit when using a Gaussian TEM00 beam. We observed intrinsic quantum correlations of weak coherent states between two parties through balanced homodyne detection. Our scheme can be used as a supplement to decoy-state BB84 protocol and differential phase-shift QKD protocol. We prepared four types of bipartite correlations ±cos2(θ12) that shared between two parties. We also demonstrated bits correlations between two parties separated by 10 km optical fiber. The bits information will be protected by the large quantum phase fluctuation of weak coherent states, adding another physical layer of security to these protocols for quantum key distribution. Using 10 m of highly nonlinear fiber (HNLF) at 77 K, we observed coincidence to accidental-coincidence ratio of 130±5 for correlated photon-pair and Two-Photon Interference visibility >98% entangled photon-pair. We also verified the non-local behavior of polarization-entangled photon pair by violating Clauser-Horne-Shimony-Holt Bell’s inequality by more than 12 standard deviations. With the HNLF at 300 K (77 K), photon-pair production rate about factor 3(2) higher than a 300 m dispersion-shifted fiber is observed. Then, we studied quantum correlation and interference of photon-pairs; with one photon of the photon-air experiencing multiple scattering in a random medium. We observed that depolarization noise photon in multiple scattering degrading the purity of photon-pair, and the existence of Raman noise photon in a photon-pair source will contribute to the depolarization affect. We found that quantum correlation of polarization-entangled photon-pair is better preserved than polarization-correlated photon-pair as one photon of the photon-pair scattered through a random medium. Our findings showed that high purity polarization-entangled photon-pair is better candidate for long distance quantum key distribution.
Resumo:
The report examines the relationship between day care institutions, schools and so called “parents unfamiliar to education” as well as the relationship between the institutions. With in Danish public and professional discourse concepts like parents unfamiliar to education are usually referring to environments, parents or families with either no or just very restricted experience of education except for the basic school (folkeskole). The “grand old man” of Danish educational research, Prof. Em. Erik Jørgen Hansen, defines the concept as follows: Parents who are distant from or not familiar with education, are parents without tradition of education and by that fact they are not able to contribute constructively in order to back up their own children during their education. Many teachers and pedagogues are not used to that term; they rather prefer concepts like “socially exposed” or “socially disadvantaged” parents or social classes or strata. The report does not only focus on parents who are not capable to support the school achievements of their children, since a low level of education is usually connected with social disadvantage. Such parents are often not capable of understanding and meeting the demands from side of the school when sending their children to school. They lack the competencies or the necessary competence of action. For the moment being much attention is done from side of the Ministries of Education and Social Affairs (recently renamed Ministry of Welfare) in order to create equal possibilities for all children. Many kinds of expertise (directions, counsels, researchers, etc.) have been more than eager to promote recommendations aiming at achieving the ambitious goal: 2015 95% of all young people should complement a full education (classes 10.-12.). Research results are pointing out the importance of increased participation of parents. In other word the agenda is set for ‘parents’ education’. It seems necessary to underline that Danish welfare policy has been changing rather radical. The classic model was an understanding of welfare as social assurance and/or as social distribution – based on social solidarity. The modern model looks like welfare as social service and/or social investment. This means that citizens are changing role – from user and/or citizen to consumer and/or investor. The Danish state is in correspondence with decisions taken by the government investing in a national future shaped by global competition. The new models of welfare – “service” and “investment” – imply severe changes in hitherto known concepts of family life, relationship between parents and children etc. As an example the investment model points at a new implementation of the relationship between social rights and the rights of freedom. The service model has demonstrated that weakness that the access to qualified services in the field of health or education is becoming more and more dependent of the private purchasing power. The weakness of the investment model is that it represents a sort of “The Winner takes it all” – since a political majority is enabled to make agendas in societal fields former protected by the tripartite power and the rights of freedom of the citizens. The outcome of the Danish development seems to be an establishment of a political governed public service industry which on one side are capable of competing on market conditions and on the other are able being governed by contracts. This represents a new form of close linking of politics, economy and professional work. Attempts of controlling education, pedagogy and thereby the population are not a recent invention. In European history we could easily point at several such experiments. The real news is the linking between political priorities and exercise of public activities by economic incentives. By defining visible goals for the public servants, by introducing measurement of achievements and effects, and by implementing a new wage policy depending on achievements and/or effects a new system of accountability is manufactured. The consequences are already perceptible. The government decides to do some special interventions concerning parents, children or youngsters, the public servants on municipality level are instructed to carry out their services by following a manual, and the parents are no longer protected by privacy. Protection of privacy and minority is no longer a valuable argumentation to prevent further interventions in people’s life (health, food, school, etc.). The citizens are becoming objects of investment, also implying that people are investing in their own health, education, and family. This means that investments in changes of life style and development of competences go hand in hand. The below mentioned programmes are conditioned by this shift.
Resumo:
This article explores children’s participation and citizenship, taking its point of departure in the empirical observation of a paradox: On the hand there is a general participatory climate and a growing commitment to empowerment of children, and on the other hand some children’s experience of discrimination, disciplining and distrust. The analysis is structured into three main parts: 1) Participation, approached from Hart’s Ladder of Participation and Bourdieu’s theorizing of power dynamics; 2) Rights, using Marshall’s tripartite conceptualization, namely civil rights, political rights and social rights, supplemented by a discussion of the right to care and cultural rights; and 3) Identity, theorized using Delanty’s conceptualization of citizenship as a learning process The article concludes that children’s citizenship, and the initiatives that are accounted for as facilitating their well being and participation though social work, too often tend towards tokenism if not discriminatory disciplining and exclusion, rather than empowerment, due to political, organisational and discursively shaped power relations.
Resumo:
Mit dem Raumkonzept Schweiz wurde das erste tripartite Konzept zur Förderung der nachhaltigen Raumentwicklung verabschiedet. – Gegen die beschlossene Teilrevision des Raumplanungsgesetzes, welche der Landschaftsinitiative als indirekter Gegenvorschlag gegenübergestellt worden war, ergriff der Schweizerische Gewerbeverband erfolgreich das Referendum. – Mit einem hauchdünnen Mehr nahmen Volk und Stände die Volksinitiative „Schluss mit dem uferlosen Bau von Zweitwohnungen“ überraschend an. Der Bundesrat erarbeitete sogleich eine Übergangsverordnung, welche per 1.1.13 in Kraft tritt. – Mit der Ablehnung dreier Volksinitiativen sprachen sich die Stimmbürgerinnen und Stimmbürger gegen eine verstärkte Wohneigentumsförderung aus.
Resumo:
Dissecting the Interaction of p53 and TRIM24 Aundrietta DeVan Duncan Supervisory Professor, Michelle Barton, Ph.D. p53, the “guardian of the genome”, plays an important role in multiple biological processes including cell cycle, angiogenesis, DNA repair and apoptosis. Because it is mutated in over 50% of cancers, p53 has been widely studied in established cancer cell lines. However, little is known about the function of p53 in a normal cell. We focused on characterizing p53 in normal cells and during differentiation. Our lab recently identified a novel binding partner of p53, Tripartite Motif 24 protein (TRIM24). TRIM24 is a member of the TRIM family of proteins, defined by their conserved RING, B-box, and coiled coil domains. Specifically, TRIM24 is a member of the TIF1 subfamily, which is characterized by PHD and Bromo domains in the C-terminus. Between the Coiled-coil and PHD domain is a linker region, 437 amino acids in length. This linker region houses important functions of TRIM24 including it’s site of interaction with nuclear receptors. TRIM24 is an E3-ubiquitin ligase, recently discovered to negatively regulate p53 by targeting it for degradation. Though it is known that Trim24 and p53 interact, it is not known if the interaction is direct and what effect this interaction has on the function of TRIM24 and p53. My study aims to elucidate the specific interaction domains of p53 and TRIM24. To determine the specific domains of p53 required for interaction with TRIM24, we performed co-immuoprecipitation (Co-IP) with recombinant full-length Flag-tagged TRIM24 protein and various deletion constructs of in vitro translated GST-p53, as well as the reverse. I found that TRIM24 binds both the carboxy terminus and DNA binding domain of p53. Furthermore, my results show that binding is altered when post-translational modifications of p53 are present, suggesting that the interaction between p53 and TRIM24 may be affected by these post-translational modifications. To determine the specific domains of TRIM24 required for p53 interaction, we performed GST pull-downs with in vitro translated, Flag-TRIM24 protein constructs and recombinant GST-p53 protein purified from E. coli. We found that the Linker region is sufficient for interaction of p53 and TRIM24. Taken together, these data indicate that the interaction between p53 and TRIM24 does occur in vitro and that interaction may be influenced by post-translational modifications of the proteins.
Resumo:
An important question in biology is to understand the role of specific gene products in regulating embryogenesis and cellular differentiation. Many of the regulatory proteins possess specific motifs, such as the homeodomain, basic helix-loop-helix structure, zinc finger, and leucine zipper. These sequence motifs participate in specific protein-DNA, protein-RNA, and protein-protein interactions, and are important for the function of these regulatory proteins.^ The human rfp (ret finger protein) belongs to a novel zinc finger protein family, the B box zinc finger family. Most of the B box proteins, including rfp, have a conserved tripartite motif, consisting of two novel zinc fingers (the RING finger and the B box) and a coiled-coil domain. Interestingly, a fusion protein between the tripartite motif of rfp and the tyrosine kinase domain of c-ret has transforming activity. In this study, we examined the expression of rfp during mouse development, and characterized the role of the tripartite motif in rfp function.^ We cloned the mouse rfp cDNA, which shares a 98.4% homology with the human sequence at amino acid level. Such strikingly high degree of homology indicates the high evolutionary pressure on the conservation of the sequence, suggesting that rfp may have an important function. Using the somatic cell hybrid system, we assigned the rfp gene to mouse chromosome 13 and human chromosome 6. Rfp transcripts and protein were ubiquitous in day 10.5-13.5 mouse embryos; however, they were restricted in adult mice, with the highest level of expression in the testis. Rfp expression in the testis is detected only in late pachytene spermatocytes and round spermatids. In both embryos and spermatogenic cells, rfp protein was distributed within cell nuclei in a punctate pattern, similar to the PODs (PML oncogenic domains) observed with another B box protein, PML. In cultured mammalian cells, we found that rfp was indeed co-localized to the PODs with PML. Using the yeast two-hybrid system, we showed that the rfp could specifically interact with PML, and that the interaction was dependent on the distal portion of the rfp coiled-coil domain.^ We also showed that rfp could form homodimers, and both the B box and coiled-coil domain were required for proper dimerization. It seems that the proximal portion of the coiled-coil domain provides the interacting interface, while the B box zinc finger orients the coil and maintains the correct structure of the whole molecule. Our data are consistent with the zinc-binding property and structural analysis of the B box. The RING finger seems to be involved in rfp nuclear localization through interaction with other proteins. We believe that homodimerization and interaction with PML are important for the normal interaction of rfp during development and differentiation. In addition, rfp homodimerization may also be essential for the oncogenic activation of the rfp-ret fusion protein. ^
Resumo:
„Antike“ ist keine europäische Exklusivität: Das Buch zeigt, wie in Südasien, Mesoamerika und Europa je eigene Antiken konstruiert werden. In den untersuchten vorkolonialen, kolonialen und postkolonialen Zusammenhängen wird die Antike durch die zeitgenössische Geschichtspolitik stark mitbestimmt. Der Vergleich lässt die Verflechtung der Vorstellungen über die Vergangenheit zwischen „klassischer“ europäischer, indischer und mesoamerikanischer Antike von der frühen Neuzeit bis in die Gegenwart erkennen. Das Buch bietet Denkanstöße für Personen, die sich mit historisch interessierter Kulturanthropologie, kritischer Altertumswissenschaft und Globalgeschichte beschäftigen.
Resumo:
Mitochondria cannot form de novo but require mechanisms allowing their inheritance to daughter cells. In contrast to most other eukaryotes Trypanosoma brucei has a single mitochondrion whose single-unit genome is physically connected to the flagellum. Here we identify a β-barrel mitochondrial outer membrane protein, termed tripartite attachment complex 40 (TAC40), that localizes to this connection. TAC40 is essential for mitochondrial DNA inheritance and belongs to the mitochondrial porin protein family. However, it is not specifically related to any of the three subclasses of mitochondrial porins represented by the metabolite transporter voltage-dependent anion channel (VDAC), the protein translocator of the outer membrane 40 (TOM40), or the fungi-specific MDM10, a component of the endoplasmic reticulum–mitochondria encounter structure (ERMES). MDM10 and TAC40 mediate cellular architecture and participate in transmembrane complexes that are essential for mitochondrial DNA inheritance. In yeast MDM10, in the context of the ERMES, is postulated to connect the mitochondrial genomes to actin filaments, whereas in trypanosomes TAC40 mediates the linkage of the mitochondrial DNA to the basal body of the flagellum. However, TAC40 does not colocalize with trypanosomal orthologs of ERMES components and, unlike MDM10, it regulates neither mitochondrial morphology nor the assembly of the protein translocase. TAC40 therefore defines a novel subclass of mitochondrial porins that is distinct from VDAC, TOM40, and MDM10. However, whereas the architecture of the TAC40-containing complex in trypanosomes and the MDM10-containing ERMES in yeast is very different, both are organized around a β-barrel protein of the mitochondrial porin family that mediates a DNA–cytoskeleton linkage that is essential for mitochondrial DNA inheritance.
Resumo:
We demonstrate the creation, characterization, and manipulation of frequency-entangled qudits by shaping the energy spectrum of entangled photons. The generation of maximally entangled qudit states is verified up to dimension d=4 through tomographic quantum-state reconstruction. Subsequently, we measure Bell parameters for qubits and qutrits as a function of their degree of entanglement. In agreement with theoretical predictions, we observe that for qutrits the Bell parameter is less sensitive to a varying degree of entanglement than for qubits. For frequency-entangled photons, the dimensionality of a qudit is ultimately limited by the bandwidth of the pump laser and can be on the order of a few millions.
Resumo:
Kinetoplastids are defined by the unique organization of their mitochondrial DNA (kDNA). It forms a highly concatenated DNA network that is linked to the basal body of the flagellum by the tripartite attachment complex (TAC). The TAC encompasses intra and extramitochondrial filaments and a highly differentiated region of the two mitochondrial membranes. Here we identify and characterize a mitochondrial outer membrane protein of Trypanosoma brucei that is predominantly localized in the TAC. The protein is essential for growth in both life cycle stages. Immunofluorescence shows that ablation of the protein does not affect kDNA replication but abolishes the segregation of the replicated kDNA network causing rapid loss of kDNA. Besides its role in kDNA maintenance in vivo and in vitro experiments show that the protein is involved in mitochondrial protein import and that it interacts with a recently discovered protein import factor. RNAi experiments in a T. brucei cell line in which the kDNA is dispensable suggest that the essential function is linked to kDNA maintenance. Bioinformatic analysis shows that the studied outer membrane protein has beta-barrel topology and that it belongs to the mitochondrial porin family comprising VDAC, Tom40 and Mdm10. Interestingly, Mdm10 has sofar only been found in yeast. Ist function in protein import and mitochondrial DNA maintenance suggests that the protein in our study is the functional homologue of Mdm10. Thus, the TAC – a defining structure of Kinetoplastids – contains a conserved protein which in yeast and trypanosomes performs the same function. Our study therefore provides an example that trypanosomal biology, rather than being unique, often simply represents a more extreme manifestation of a conserved biological concept.
Resumo:
Kinetoplastids are defined by the unique organization of their mitochondrial DNA (kDNA). It forms a highly concatenated DNA network that is linked to the basal body of the flagellum by the tripartite attachment complex (TAC). The TAC encompasses intra and extramitochondrial filaments and a highly differentiated region of the two mitochondrial membranes. Here we identify and characterize a mitochondrial outer membrane protein of Trypanosoma brucei that is predominantly localized in the TAC. The protein is essential for growth in both life cycle stages. Immunofluorescence shows that ablation of the protein does not affect kDNA replication but abolishes the segregation of the replicated kDNA network causing rapid loss of kDNA. Besides its role in kDNA maintenance in vivo and in vitro experiments show that the protein is involved in mitochondrial protein import and that it interacts with a recently discovered protein import factor. RNAi experiments in a T. brucei cell line in which the kDNA is dispensable suggest that the essential function is linked to kDNA maintenance. Bioinformatic analysis shows that the studied outer membrane protein has beta-barrel topology and that it belongs to the mitochondrial porin family comprising VDAC, Tom40 and Mdm10. Interestingly, Mdm10 has so far only been found in yeast. Its function in protein import and mitochondrial DNA maintenance suggests that the protein in our study is the functional homologue of Mdm10. Thus, the TAC – a defining structure of Kinetoplastids – contains a conserved protein which in yeast and trypanosomes performs the same function. Our study therefore provides an example that trypanosomal biology, rather than being unique, often simply represents a more extreme manifestation of a conserved biological concept.
Resumo:
Introduction According to Lent and Lopez’ (2002) tripartite view of efficacy beliefs, members of a team form beliefs about the efficacy of their team partners. This other-efficacy belief can influence individual performance as shown by Dunlop, Beatty, and Beauchamp (2011) in their experimental study using manipulated performance feedback to alter other-efficacy beliefs. Participants holding favorable other-efficacy beliefs outperformed those with lower other--‐efficacy beliefs. Antecedents of such other-efficacy beliefs are amongst others perceptions regarding motivation and psychological factors of the partner (Jackson, Knapp, & Beauchamp, 2008). Overt self-talk could be interpreted as the manifestation of such motivational or psychological factors. In line with this assumption, in an experimental study using dubbed videos of the same segment of a tennis match, Van Raalte, Brewer, Cornelius, and Petitpas (2006) found that players were perceived more favorably (e.g., more concentrated, and of higher ability levels) when shown with dubbed positive self-talk as compared to dubbed negative or no dubbed self--‐talk. Objectives The aim of the study was to examine the possible effects of a confederate’s overt self-talk on participants’ other-efficacy beliefs and performance in a team setting. Method In a laboratory experiment (between-subjects, pre-post-test design, matched by pretest performance) 89 undergraduate students (female = 35, M = 20.81 years, SD = 2.34) participated in a golf putting task together with a confederate (same gender groups). Depending on the experimental condition (positive, negative, or no self-talk), the confederate commented his or her putts according to a self-talk script. Bogus performance feedback assured that the performance of the confederate was held constant. Performance was measured as the distance to the center of the target, other-efficacy by a questionnaire. Results The data collection has just finished and the results of repeated measures analyses of variance will be presented and discussed at the congress. We expect to find higher other-efficacy beliefs and better individual performance in the positive self-talk condition. References Dunlop, W.L., Beatty, D.J., & Beauchamp, M.R. (2011). Examining the influence of other-efficacy and self-efficacy on personal performance. Journal of Sport & Exercise Psychology, 33, 586-593. Jackson, B., Knapp, P., & Beauchamp, M.R. (2008). Origins and consequences of tripartite efficacy beliefs within elite athlete dyads. Journal of Sport and Exercise Psychology, 30, 512-540. Lent, R.W., & Lopez, F.G. (2002). Cognitive ties that bind: A tripartite view of efficacy beliefs in growth--‐promoting relationships. Journal of Social and Clinical Psychology, 21, 256-286. Van Raalte, J.L., Brewer, B.W, Cornelius, A.E., & Petitpas, A.J. (2006). Self-presentational effects of self-talk on perceptions of tennis players. Hellenic Journal of Psychology, 3, 134-149.
Resumo:
In the unicellular parasite Trypanosoma brucei, as in other eukaryotes, more than 95% of all mitochondrial proteins are imported from the cytosol. The recently characterized multisubunit ATOM complex, the functional analogue of the TOM complex of yeast, mediates import of essentially all proteins across the outer mitochondrial membrane in T. brucei. Moreover, an additional protein termed pATOM36, which is loosely associated with the ATOM complex, has been implicated in the import of only a subset of mitochondrial proteins. Here we have investigated more precisely which role pATOM36 plays in mitochondrial protein import. RNAi mediated ablation of pATOM36 specifically depletes a subset of outer mitochondrial membrane proteins including ATOM complex subunits and as a consequence results in the collapse of the ATOM complex as shown by Blue native PAGE. In addition, a SILAC-based global proteomic analysis of uninduced and induced pATOM36 RNAi cells together with in vitro import experiments suggest that pATOM36 might be a novel protein import factor acting on a subset of alpha-helically anchored mitochondrial outer membrane proteins. Identification of pATOM36 interaction partners by co-immunoprecipitation together with immunofluorescence analysis shows that unexpectedly a fraction of the protein is associated with the tripartite attachment complex (TAC). This complex is essential for proper inheritance of the mitochondrial DNA in T. brucei. It forms a physical connection between the single unit mitochondrial DNA and the basal body of the flagellum that is stable throughout the cell cycle. Thus, pATOM36 simultaneously mediates ATOM assembly, and thus protein import, as well as mitochondrial DNA inheritance since it is an essential component of the TAC.
Resumo:
In trypanosomes, as in other eukaryotes, more than 95% of all mitochondrial proteins are imported into the mitochondrion. The recently characterized multisubunit ATOM complex mediates import of essentially all proteins across the outer mitochondrial membrane in T. brucei. Moreover, an additional protein termed pATOM36, which is loosely associated with the ATOM complex, has been implicated in the import of only a subset of mitochondrial matrix proteins. Here we have investigated more precisely which role pATOM36 plays in mitochondrial protein import. RNAi mediated ablation of pATOM36 specifically depletes a subset of ATOM complex subunits and as a consequence results in the collapse of the ATOM complex as shown by Blue native PAGE. In addition, a SILAC-based global proteomic analysis of uninduced and induced pATOM36 RNAi cells together with in vitro import experiments suggest that pATOM36 might be a novel protein insertase acting on a subset of alpha-helically anchored mitochondrial outer membrane proteins. Identification of pATOM36 interaction partners by co-immunoprecipitation together with immunofluorescence analysis furthermore shows that unexpectedly a fraction of the protein is associated with the tripartite attachment complex (TAC). This complex is essential for proper inheritance of the kDNA as it forms a physical connection between the kDNA and the basal body of the flagellum throughout the cell cycle. Thus, the presence of pATOM36 in the TAC provides an exciting link between mitochondrial protein import and kDNA inheritance.
Resumo:
The multisubunit ATOM complex mediates import of essentially all proteins across the outer mitochondrial membrane in T. brucei. Moreover, an additional protein termed pATOM36, which is loosely associated with the ATOM complex, has been implicated in the import of only a subset of mitochondrial matrix proteins. Here we have investigated more precisely which role pATOM36 plays in mitochondrial protein import. RNAi mediated ablation of pATOM36 specifically depletes a subset of ATOM complex subunits and as a consequence results in the collapse of the ATOM complex as shown by Blue native PAGE. In addition, a SILAC-based global proteomic analysis of uninduced and induced pATOM36 RNAi cells together with in vitro import experiments suggest that pATOM36 might be a novel protein insertase acting on a subset of alpha-helically anchored mitochondrial outer membrane proteins. Identification of pATOM36 interaction partners by co-immunoprecipitation together with immunofluorescence analysis furthermore shows that unexpectedly a fraction of the protein is associated with the tripartite attachment complex (TAC). This complex is essential for proper inheritance of the mtDNA; also called kinetoplast or kDNA; as it forms a physical connection between the kDNA and the basal body of the single flagellum throughout the cell cycle. Thus, the presence of pATOM36 in the TAC provides an exciting link between mitochondrial protein import and kDNA inheritance.