917 resultados para Therapeutics, Physiological.
Resumo:
In the last years of research, I focused my studies on different physiological problems. Together with my supervisors, I developed/improved different mathematical models in order to create valid tools useful for a better understanding of important clinical issues. The aim of all this work is to develop tools for learning and understanding cardiac and cerebrovascular physiology as well as pathology, generating research questions and developing clinical decision support systems useful for intensive care unit patients. I. ICP-model Designed for Medical Education We developed a comprehensive cerebral blood flow and intracranial pressure model to simulate and study the complex interactions in cerebrovascular dynamics caused by multiple simultaneous alterations, including normal and abnormal functional states of auto-regulation of the brain. Individual published equations (derived from prior animal and human studies) were implemented into a comprehensive simulation program. Included in the normal physiological modelling was: intracranial pressure, cerebral blood flow, blood pressure, and carbon dioxide (CO2) partial pressure. We also added external and pathological perturbations, such as head up position and intracranial haemorrhage. The model performed clinically realistically given inputs of published traumatized patients, and cases encountered by clinicians. The pulsatile nature of the output graphics was easy for clinicians to interpret. The manoeuvres simulated include changes of basic physiological inputs (e.g. blood pressure, central venous pressure, CO2 tension, head up position, and respiratory effects on vascular pressures) as well as pathological inputs (e.g. acute intracranial bleeding, and obstruction of cerebrospinal outflow). Based on the results, we believe the model would be useful to teach complex relationships of brain haemodynamics and study clinical research questions such as the optimal head-up position, the effects of intracranial haemorrhage on cerebral haemodynamics, as well as the best CO2 concentration to reach the optimal compromise between intracranial pressure and perfusion. We believe this model would be useful for both beginners and advanced learners. It could be used by practicing clinicians to model individual patients (entering the effects of needed clinical manipulations, and then running the model to test for optimal combinations of therapeutic manoeuvres). II. A Heterogeneous Cerebrovascular Mathematical Model Cerebrovascular pathologies are extremely complex, due to the multitude of factors acting simultaneously on cerebral haemodynamics. In this work, the mathematical model of cerebral haemodynamics and intracranial pressure dynamics, described in the point I, is extended to account for heterogeneity in cerebral blood flow. The model includes the Circle of Willis, six regional districts independently regulated by autoregulation and CO2 reactivity, distal cortical anastomoses, venous circulation, the cerebrospinal fluid circulation, and the intracranial pressure-volume relationship. Results agree with data in the literature and highlight the existence of a monotonic relationship between transient hyperemic response and the autoregulation gain. During unilateral internal carotid artery stenosis, local blood flow regulation is progressively lost in the ipsilateral territory with the presence of a steal phenomenon, while the anterior communicating artery plays the major role to redistribute the available blood flow. Conversely, distal collateral circulation plays a major role during unilateral occlusion of the middle cerebral artery. In conclusion, the model is able to reproduce several different pathological conditions characterized by heterogeneity in cerebrovascular haemodynamics and can not only explain generalized results in terms of physiological mechanisms involved, but also, by individualizing parameters, may represent a valuable tool to help with difficult clinical decisions. III. Effect of Cushing Response on Systemic Arterial Pressure. During cerebral hypoxic conditions, the sympathetic system causes an increase in arterial pressure (Cushing response), creating a link between the cerebral and the systemic circulation. This work investigates the complex relationships among cerebrovascular dynamics, intracranial pressure, Cushing response, and short-term systemic regulation, during plateau waves, by means of an original mathematical model. The model incorporates the pulsating heart, the pulmonary circulation and the systemic circulation, with an accurate description of the cerebral circulation and the intracranial pressure dynamics (same model as in the first paragraph). Various regulatory mechanisms are included: cerebral autoregulation, local blood flow control by oxygen (O2) and/or CO2 changes, sympathetic and vagal regulation of cardiovascular parameters by several reflex mechanisms (chemoreceptors, lung-stretch receptors, baroreceptors). The Cushing response has been described assuming a dramatic increase in sympathetic activity to vessels during a fall in brain O2 delivery. With this assumption, the model is able to simulate the cardiovascular effects experimentally observed when intracranial pressure is artificially elevated and maintained at constant level (arterial pressure increase and bradicardia). According to the model, these effects arise from the interaction between the Cushing response and the baroreflex response (secondary to arterial pressure increase). Then, patients with severe head injury have been simulated by reducing intracranial compliance and cerebrospinal fluid reabsorption. With these changes, oscillations with plateau waves developed. In these conditions, model results indicate that the Cushing response may have both positive effects, reducing the duration of the plateau phase via an increase in cerebral perfusion pressure, and negative effects, increasing the intracranial pressure plateau level, with a risk of greater compression of the cerebral vessels. This model may be of value to assist clinicians in finding the balance between clinical benefits of the Cushing response and its shortcomings. IV. Comprehensive Cardiopulmonary Simulation Model for the Analysis of Hypercapnic Respiratory Failure We developed a new comprehensive cardiopulmonary model that takes into account the mutual interactions between the cardiovascular and the respiratory systems along with their short-term regulatory mechanisms. The model includes the heart, systemic and pulmonary circulations, lung mechanics, gas exchange and transport equations, and cardio-ventilatory control. Results show good agreement with published patient data in case of normoxic and hyperoxic hypercapnia simulations. In particular, simulations predict a moderate increase in mean systemic arterial pressure and heart rate, with almost no change in cardiac output, paralleled by a relevant increase in minute ventilation, tidal volume and respiratory rate. The model can represent a valid tool for clinical practice and medical research, providing an alternative way to experience-based clinical decisions. In conclusion, models are not only capable of summarizing current knowledge, but also identifying missing knowledge. In the former case they can serve as training aids for teaching the operation of complex systems, especially if the model can be used to demonstrate the outcome of experiments. In the latter case they generate experiments to be performed to gather the missing data.
Resumo:
In recent years and thanks to innovative technological advances in supplemental lighting sources and photo-selective filters, light quality manipulation (i.e. spectral composition of sunlight) have demonstrated positive effects on plant performance in ornamentals and vegetable crops. However, this aspect has been much less studied in fruit trees due to the difficulty of conditioning the light environment of orchards. The aim of the present PhD research was to study the use of different colored nets with selective light transmission in the blue (400 – 500 nm), red (600 – 700 nm) and near infrared (700 – 1100 nm) wavelengths as a tool to the light quality management and its morphological and physiological effects in field-grown apple trees. Chapter I provides a review the current status on physiological and technological advances on light quality management in fruit trees. Chapter II shows the main effect of colored nets on morpho-anatomical (stomata density, mesophyll structure and leaf mass area index) characteristics in apple leaves. Chapter III provides an analysis about the effect of micro-environmental conditions under colored nets on leaf stomatal conductance and leaf photosynthetic capacity. Chapter IV describes a study approach to evaluate the impact of colored nets on fruit growth potential in apples. Summing up results obtained in the present PhD dissertation clearly demonstrate that light quality management through photo-selective colored nets presents an interesting potential for the manipulation of plant morphological and physiological traits in apple trees. Cover orchards with colored nets might be and alternative technology to address many of the most important challenges of modern fruit growing, such as: the need for the efficient use of natural resources (water, soil and nutrients) the reduction of environmental impacts and the mitigation of possible negative effects of global climate change.
Resumo:
The aim of the present thesis was to better understand the physiological role of the phytohormones jasmonates (JAs) and abscisic acid (ABA) during fruit ripening in prospect of a possible field application of JAs and ABA to improve fruit yield and quality. In particular, the effects of exogenous application of these substances at different fruit developmental stages and under different experimental conditions were evaluated. Some aspects of the water relations upon ABA treatment were also analysed. Three fruit species, peach (Prunus persica L. Batsch), golden (Actinidia chinensis) and green kiwifruit (Actinidia deliciosa), and several of their cvs, were used for the trials. Different experimental models were adopted: fruits in planta, detached fruit, detached branches with fruit, girdled branches and micropropagated plants. The work was structured into four sets of experiments as follows: (i) Pre-harvest methyl jasmonate (MJ) application was performed at S3/S4 transition under field conditions in Redhaven peach; ethylene production, ripening index, fruit quality and shelf-life were assessed showing that MJ-treated fruit were firmer and thus less ripe than controls as confirmed by the Index of Absorbance Difference (IAD), but exhibited a shorter shelf-life due to an increase in ethylene production. Moreover, the time course of the expression of ethylene-, auxin- and other ripening-related genes was determined. Ripening-related ACO1 and ACS1 transcript accumulation was inhibited though transiently by MJ, and gene expression of the ethylene receptor ETR2 and of the ethylene-related transcription factor ERF2 was also altered. The time course of the expression of several auxin-related genes was strongly affected by MJ suggesting an increase in auxin biosynthesis, altered auxin conjugation and release as well as perception and transport; the need for a correct ethylene/auxin balance during ripening was confirmed. (ii) Pre- and post-harvest ABA applications were carried out under field conditions in Flaminia and O’Henry peach and Stark Red Gold nectarine fruit; ethylene production, ripening index, fruit quality and shelf-life were assessed. Results show that pre-harvest ABA applications increase fruit size and skin color intensity. Also post-harvest ABA treatments alter ripening-related parameters; in particular, while ethylene production is impaired in ABA-treated fruit soluble solids concentration (SSC) is enhanced. Following field ABA applications stem water potential was modified since ABA-treated peach trees retain more water. (iii) Pre- and post-harvest ABA and PDJ treatments were carried out in both kiwifruit species under field conditions at different fruit developmental stages and in post-harvest. Ripening index, fruit quality, plant transpiration, photosynthesis and stomatal conductance were assessed. Pre-harvest treatments enhance SSC in the two cvs and flesh color development in golden kiwifruit. Post-harvest applications of either ABA or ABA plus PDJ lead to increased SSC. In addition, ABA reduces gas exchanges in A. deliciosa. (iv) Spray, drench and dipping ABA treatments were performed in micropropagated peach plants and in peach and nectarine detached branches; plant water use and transpiration, biomass production and fruit dehydration were determined. In both plants and branches ABA significantly reduces water use and fruit dehydration. No negative effects on biomass production were detected. The present information, mainly arising from plant growth regulator application in a field environment, where plants have to cope with multiple biotic and abiotic stresses, may implement the perspectives for the use of these substances in the control of fruit ripening.
Resumo:
The objective of this thesis was to study the response mechanisms of grapevine to Fe-deficiency and to potential Fe chlorosis prevention strategies. The results show that the presence of bicarbonate in the nutrient solution shifted the activity of PEPC and TCA cycle enzymes and the accumulation/translocation of organic acids in roots of Fe-deprived plants. The rootstock 140 Ruggeri displayed a typical behavior of calcicole plants under bicarbonate stress. The Fe chlorosis susceptible rootstock 101-14 reacted to a prolonged Fe-deficiency reducing the root activity of PEPC and MDH. Noteworthy, it accumulates high levels of citric acid in roots, indicating a low capacity to utilizing, transporting and/or exudating organic acids into the rhizosfere. In contrast, 110 Richter rootstock is capable to maintain an active metabolism of organic acids in roots, accumulating them to a lesser extent than 101-14. Similarly to 101-14, SO4 genotype displays a strong decrease of mechanisms associated to Fe chlorosis tolerance (PEPC and MDH enzymes). Nevertheless it is able to avoid excessive accumulation of citric acid in roots, similar as 110 Richter rootstock. Intercropping with Festuca rubra increased leaf chlorophyll content and net photosynthesis. In addition, intercropping reduces the activity of PEPC in roots, similary to Fe-chelate supply. Applications of NH4+ with nitrification inhibitor prevents efficiently Fe-deficiency, increases chlorophyll content, and induces similar root biochemical responses as Fe-EDDHA. Without the addition of nitrification inhibitors, the effectiveness of NH4+ supply on Fe chlorosis prevention resulted significantly lower. The aspects intertwined in this investigation highlight the complexity of Fe physiology and the fine metabolic tuning of grapevine genotypes to Fe availability and soil-related environmental factors. The experimental evidences reveal the need to carry out future researches on Fe nutrition maintaining a continous flow of knowledge between theoretical and agronomical perspectives for fully supporting the efforts devoted to convert science into practice.
Resumo:
Microalgae are sun - light cell factories that convert carbon dioxide to biofuels, foods, feeds, and other bioproducts. The concept of microalgae cultivation as an integrated system in wastewater treatment has optimized the potential of the microalgae - based biofuel production. These microorganisms contains lipids, polysaccharides, proteins, pigments and other cell compounds, and their biomass can provide different kinds of biofuels such as biodiesel, biomethane and ethanol. The algal biomass application strongly depends on the cell composition and the production of biofuels appears to be economically convenient only in conjunction with wastewater treatment. The aim of this research thesis was to investigate a biological wastewater system on a laboratory scale growing a newly isolated freshwater microalgae, Desmodesmus communis, in effluents generated by a local wastewater reclamation facility in Cesena (Emilia Romagna, Italy) in batch and semi - continuous cultures. This work showed the potential utilization of this microorganism in an algae - based wastewater treatment; Desmodesmus communis had a great capacity to grow in the wastewater, competing with other microorganisms naturally present and adapting to various environmental conditions such as different irradiance levels and nutrient concentrations. The nutrient removal efficiency was characterized at different hydraulic retention times as well as the algal growth rate and biomass composition in terms of proteins, polysaccharides, total lipids and total fatty acids (TFAs) which are considered the substrate for biodiesel production. The biochemical analyses were coupled with the biomass elemental analysis which specified the amount of carbon and nitrogen in the algal biomass. Furthermore photosynthetic investigations were carried out to better correlate the environmental conditions with the physiology responses of the cells and consequently get more information to optimize the growth rate and the increase of TFAs and C/N ratio, cellular compounds and biomass parameter which are fundamental in the biomass energy recovery.
Resumo:
The DOMON domain is a domain widespread in nature, predicted to fold in a β-sandwich structure. In plants, AIR12 is constituted by a single DOMON domain located in the apoplastic space and is GPI-modified for anchoring to the plasma membrane. Arabidopsis thaliana AIR12 has been heterologously expressed as a recombinant protein (recAtAIR12) in Pichia pastoris. Spectrophotometrical analysis of the purified protein showed that recAtAir12 is a cytochrome b. RecAtAIR12 is highly glycosylated, it is reduced by ascorbate, superoxide and naftoquinones, oxidised by monodehydroascorbate and oxygen and insensitive to hydrogen peroxide. The addition of recAtAIR12 to permeabilized plasma membranes containing NADH, FeEDTA and menadione, caused a statistically significant increase in hydroxyl radicals as detected by electron paramagnetic resonance. In these conditions, recAtAIR12 has thus a pro-oxidant role. Interestingly, AIR12 is related to the cytochrome domain of cellobiose dehydrogenase which is involved in lignin degradation, possibly via reactive oxygen species (ROS) production. In Arabidopsis the Air12 promoter is specifically activated at sites where cell separations occur and ROS, including •OH, are involved in cell wall modifications. air12 knock-out plants infected with Botrytis cinerea are more resistant than wild-type and air12 complemented plants. Also during B. cinerea infection, cell wall modifications and ROS are involved. Our results thus suggest that AIR12 could be involved in cell wall modifying reactions by interacting with ROS and ascorbate. CyDOMs are plasma membrane redox proteins of plants that are predicted to contain an apoplastic DOMON fused with a transmembrane cytochrome b561 domain. CyDOMs have never been purified nor characterised. The trans-membrane portion of a soybean CyDOM was expressed in E. coli but purification could not be achieved. The DOMON domain was expressed in P. pastoris and shown to be itself a cytochrome b that could be reduced by ascorbate.
Resumo:
The research was carried out to investigate of main elements of salt stress response in two strawberry cultivars, Elsanta and Elsinore. Plants were grown under 0, 10, 20 and 40 mM NaCl for 80 days. Salinity dramatically affected growth in both cultivars, although Elsinore appeared to be more impaired than Elsanta. Moreover a significant reduction of leaf photosynthesis, evaporation, and stomatal conductance was recorded 24 hrs after the stress was applied in both cultivars, whereas physiological functions were differentially restored after acclimation. However, cv. Elsanta had more efficient leaf gas exchange and water status than cv. Elsinore. In general, Fruit yield reduced upon salinization, wheares fruit quality concerning fruit taste, aroma, appearance, total soluble solids and titratable acidity, did not change but rather was enhanced under moderate salinity. On the other hand fruit quality was impaired at severe salt stress. Fruit antioxidant content and antioxidant capacity were enhanced significantly by increasing salt concentration in both cultivars. The oxidative effects of the stress were defined by the measures of some enzymatic activities and lipid peroxidation. Consistently, an increase in superoxide dismutase (SOD), catalase (CAT), peroxide dismutase (POD) enzymes and higher content of proline and soluble proteins were observed in cv. Elsinore than in cv. Elsanta. The increase coincided with a decrease in lipid peroxidation. The research confirmed that although strawberry cultivars were sensitive to salinity, difference between cultivars exist; The experiment revealed that cv. Elsanta could stand severe salt stress, which was lethal to cv. Elsinore. The parameters measured in the previous experiment were proposed as early screening tools for the salt stress response in nine strawberry genotypes. The results showed that, wheares Elsanta and Elsinore cultivars had a lower dry weight reduction at 40 mM NaCl among cultivars, Naiad, Kamila, and Camarosa were the least salt-sensitive cultivars among the screened.
Resumo:
Over the past years fruit and vegetable industry has become interested in the application of both osmotic dehydration and vacuum impregnation as mild technologies because of their low temperature and energy requirements. Osmotic dehydration is a partial dewatering process by immersion of cellular tissue in hypertonic solution. The diffusion of water from the vegetable tissue to the solution is usually accompanied by the simultaneous solutes counter-diffusion into the tissue. Vacuum impregnation is a unit operation in which porous products are immersed in a solution and subjected to a two-steps pressure change. The first step (vacuum increase) consists of the reduction of the pressure in a solid-liquid system and the gas in the product pores is expanded, partially flowing out. When the atmospheric pressure is restored (second step), the residual gas in the pores compresses and the external liquid flows into the pores. This unit operation allows introducing specific solutes in the tissue, e.g. antioxidants, pH regulators, preservatives, cryoprotectancts. Fruit and vegetable interact dynamically with the environment and the present study attempts to enhance our understanding on the structural, physico-chemical and metabolic changes of plant tissues upon the application of technological processes (osmotic dehydration and vacuum impregnation), by following a multianalytical approach. Macro (low-frequency nuclear magnetic resonance), micro (light microscopy) and ultrastructural (transmission electron microscopy) measurements combined with textural and differential scanning calorimetry analysis allowed evaluating the effects of individual osmotic dehydration or vacuum impregnation processes on (i) the interaction between air and liquid in real plant tissues, (ii) the plant tissue water state and (iii) the cell compartments. Isothermal calorimetry, respiration and photosynthesis determinations led to investigate the metabolic changes upon the application of osmotic dehydration or vacuum impregnation. The proposed multianalytical approach should enable both better designs of processing technologies and estimations of their effects on tissue.
Resumo:
The cardiomyocyte is a complex biological system where many mechanisms interact non-linearly to regulate the coupling between electrical excitation and mechanical contraction. For this reason, the development of mathematical models is fundamental in the field of cardiac electrophysiology, where the use of computational tools has become complementary to the classical experimentation. My doctoral research has been focusing on the development of such models for investigating the regulation of ventricular excitation-contraction coupling at the single cell level. In particular, the following researches are presented in this thesis: 1) Study of the unexpected deleterious effect of a Na channel blocker on a long QT syndrome type 3 patient. Experimental results were used to tune a Na current model that recapitulates the effect of the mutation and the treatment, in order to investigate how these influence the human action potential. Our research suggested that the analysis of the clinical phenotype is not sufficient for recommending drugs to patients carrying mutations with undefined electrophysiological properties. 2) Development of a model of L-type Ca channel inactivation in rabbit myocytes to faithfully reproduce the relative roles of voltage- and Ca-dependent inactivation. The model was applied to the analysis of Ca current inactivation kinetics during normal and abnormal repolarization, and predicts arrhythmogenic activity when inhibiting Ca-dependent inactivation, which is the predominant mechanism in physiological conditions. 3) Analysis of the arrhythmogenic consequences of the crosstalk between β-adrenergic and Ca-calmodulin dependent protein kinase signaling pathways. The descriptions of the two regulatory mechanisms, both enhanced in heart failure, were integrated into a novel murine action potential model to investigate how they concur to the development of cardiac arrhythmias. These studies show how mathematical modeling is suitable to provide new insights into the mechanisms underlying cardiac excitation-contraction coupling and arrhythmogenesis.
Resumo:
In this study, some important aspects of the relationship between honey bees (Apis mellifera L.) and pesticides have been investigated. In the first part of the research, the effects of the exposure of honey bees to neonicotinoids and fipronil contaminated dusts were analyzed. In fact, considerable amounts of these pesticides, employed for maize seed dressing treatments, may be dispersed during the sowing operations, thus representing a way of intoxication for honey bees. In particular, a specific way of exposure to this pesticides formulation, the indirect contact, was taken into account. To this aim, we conducted different experimentations, in laboratory, in semi-field and in open field conditions in order to assess the effects on mortality, foraging behaviour, colony development and capacity of orientation. The real dispersal of contaminated dusts was previously assessed in specific filed trials. In the second part, the impact of various pesticides (chemical and biological) on honey bee biochemical-physiological changes, was evaluated. Different ways and durations of exposure to the tested products were also employed. Three experimentations were performed, combining Bt spores and deltamethrin, Bt spores and fipronil, difenoconazole and deltamethrin. Several important enzymes (GST, ALP, SOD, CAT, G6PDH, GAPDH) were selected in order to test the pesticides induced variations in their activity. In particular, these enzymes are involved in different pathways of detoxification, oxidative stress defence and energetic metabolism. The results showed a significant effect on mortality of neonicotinoids and fipronil contaminated dusts, both in laboratory and in semi-field trials. However, no effects were evidenced in honey bees orientation capacity. The analysis of different biochemical indicators highlighted some interesting physiological variations that can be linked to the pesticide exposure. We therefore stress the attention on the possibility of using such a methodology as a novel toxicity endpoint in environmental risk assessment.
Resumo:
Among abiotic stresses, high salinity stress is the most severe environmental stress. High salinity exerts its negative impact mainly by disrupting the ionic and osmotic equilibrium of the cell. In saline soils, high levels of sodium ions lead to plant growth inhibition and even death. Salt tolerance in plants is a multifarious phenomenon involving a variety of changes at molecular, organelle, cellular, tissue as well as whole plant level. In addition, salt tolerant plants show a range of adaptations not only in morphological or structural features but also in metabolic and physiological processes that enable them to survive under extreme saline environments. The main objectives of my dissertation were understanding the main physiological and biomolecular features of plant responses to salinity in different genotypes of horticultural crops that are belonging to different families Solanaceae (tomato) and Cucurbitaceae (melon) and Brassicaceae (cabbage and radish). Several aspects of crop responses to salinity have been addressed with the final aim of combining elements of functional stress response in plants by using several ways for the assessment of plant stress perception that ranging from destructive measurements (eg. leaf area, relative growth rate, leaf area index, and total plant fresh and dry weight), to physiological determinations (eg. stomatal conductance, leaf gas exchanges, water use efficiency, and leaf water relation), to the determination of metabolite accumulation in plant tissue (eg. Proline and protein) as well as evaluation the role of enzymatic antioxidant capacity assay in scavenging reactive oxygen species that have been generated under salinized condition, and finally assessing the gene induction and up-down regulation upon salinization (eg. SOS pathway).
Resumo:
Nowadays microalgae are studied, and a number of species already mass-cultivated, for their application in many fields: food and feed, chemicals, pharmaceutical, phytoremediation and renewable energy. Phytoremediation, in particular, can become a valid integrated process in many algae biomass production systems. This thesis is focused on the physiological and biochemical effects of different environmental factors, mainly macronutrients, lights and temperature on microalgae. Microalgal species have been selected on the basis of their potential in biotechnologies, and nitrogen occurs in all chapters due to its importance in physiological and applicative fields. There are 5 chapters, ready or in preparation to be submitted, with different specific matters: (i) to measure the kinetic parameters and the nutrient removal efficiencies for a selected and local strain of microalgae; (ii) to study the biochemical pathways of the microalga D. communis in presence of nitrate and ammonium; (iii) to improve the growth and the removal efficiency of a specific green microalga in mixotrophic conditions; (iv) to optimize the productivity of some microalgae with low growth-rate conditions through phytohormones and other biostimulants; and (v) to apply the phyto-removal of ammonium in an effluent from anaerobic digestion. From the results it is possible to understand how a physiological point of view is necessary to provide and optimize already existing biotechnologies and applications with microalgae.
Resumo:
Die schlechte Prognose des Nierenzellkarzinoms (NZK) kommt nicht durch den Primärtumor an sich zustande, sondern durch das Vorhandensein von Fernmetastasen. Obwohl bereits vieles über die Mechanismen der Metastasierung bekannt ist, sind die Hintergründe der Organspezifität metastasierender Tumorzellen weitgehend ungeklärt. In 30% der Fälle kommt es zur Entstehung von Knochenmetastasen. Diese hohe Frequenz deutet darauf hin, dass NZK-Zellen bevorzugt in dieses Organ metastasieren, da die Knochenmatrix ein günstiges Mikromilieu für ihr Wachstum bietet. Hierbei könnte extrazellulärem Calcium und dem für die Detektion zuständigen Calcium-sensitiven Rezeptor (CaSR) eine entscheidende Rolle zukommen, da sich Knochen durch ihren hohen Gehalt an Calcium auszeichnen und von anderen Organen unterscheiden. Das Ziel der vorliegenden Dissertation lag in der Aufklärung der Mechanismen, die zu einer Knochenmetastasierung des NZK führen.rnrnIn ersten Analysen konnte gezeigt werden, dass sich bereits der Primärtumor durch eine von Calcium unabhängige charakteristische Expression bestimmter Signalmediatoren auszeichnet, die Metastasierungspotenzial und –ort bestimmen. So wurden in Gewebeproben und primären Tumorzellen von NZK-Patienten, die innerhalb von fünf Jahren nach Nephrektomie Knochenmetastasen entwickelten, in Westernblot-Analysen eine sehr hohe Expression der α5-Integrine, eine starke Aktivität von Akt, FAK und eine Reduktion der PTEN-Expression detektiert. Diese Veränderungen begünstigten die chemotaktische Migration in Richtung Fibronektin (bestimmt in einer Boyden-Kammer) und die Adhäsion dieser NZK-Zellen an Komponenten der Extrazellularmatrix (Fibronektin und Kollagen I – beides ist Bestandteil der Knochenmatrix). Migration und Adhäsion sind essentielle Schritte beim Austreten der Tumorzellen aus dem Primärtumor und Infiltration des Knochens. In NZK-Zellen von Patienten, die keine Metastasen oder Lungenmetastasen entwickelten, waren diese Charakteristika nicht oder deutlich schwächer ausgeprägt. Bestimmte Primärtumore sind somit prädestiniert Knochenmetastasen auszubilden.rnrnUm die Bedeutung von extrazellulärem Calcium und dem CaSR darzustellen, wurde die Expression des CaSR mittels Real-Time PCR, Westernblot-Analysen und durchflusszytometrisch in NZK-Gewebeproben und –Zellen von Patienten untersucht, die innerhalb von fünf Jahren nach Nephrektomie keine bzw. Lungen- oder Knochenmetastasen ausbildeten. Proben von Patienten mit Knochenmetastasen zeigten die stärkste Expression von CaSR-mRNA und CaSR-Protein. Durch eine Behandlung der NZK-Zellen mit Calcium in physiologischen Konzentrationen, konnte Calcium als möglicher Regulator der CaSR-Expression ausgeschlossen werden. Der Einfluss von Calcium auf die Metastasierungsfähigkeit der primären NZK-Zellen wurde anhand eines weiteren chemotaktischen Migrationsversuchs mit Calcium als Chemotaxin analysiert. Die Zellproliferationsrate konnte nach Behandlung der Zellen mit Calcium mittels BrdU-Inkorporation gemessen werden. NZK-Zellen, die aus dem Primärtumor von Patienten mit Knochenmetastasen kultiviert wurden, konnten durch eine erhöhte extrazelluläre Calcium-Konzentration verstärkt zu Migration und Proliferation (Konzentrations-abhängige Steigerung) angeregt werden. Diese stellen weitere essentielle Schritte bei der Infiltration und Vermehrung der NZK-Zellen in den Knochen dar. Die Effekte traten bei NZK-Zellen aus Patienten, die keine oder Lungenmetastasen ausbildeten, nicht auf. Die Identifizierung der beteiligten Signalwege erfolgte in Westernblot-Analysen und einem Phospho-Kinase Array. Hierdurch konnten eine verstärkte Aktivierung des Akt-, JNK-, p38α- und PLCγ-1-Signalwegs und eine beinahe vollständige Reduktion der PTEN-Expression nach Calcium-Behandlung in Knochen-metastasierenden NZK-Zellen aufgedeckt werden. Durch Blockierung des CaSR mittels des Inhibitors NPS 2143 konnte bestätigt werden, dass die metastasierungs-fördernde Wirkung von Calcium über den CaSR zustande kommt. rnrnNZK-Zellen zeichnen sich somit bereits im Primärtumor durch eine charakteristische Expression verschiedener Signalmediatoren aus, die ihr Metastasierungspotenzial und die mögliche Lokalisation der Metastase bestimmen. Gelangen metastasierende NZK-Zellen auf ihrem Weg durch den Blutkreislauf in das Knochenmilieu, verhilft ihnen hier eine hohe Expression des CaSR zu einem wichtigen Überlebensvorteil. Extrazelluläres Calcium wirkt über den CaSR, verstärkt ihre metastatischen Eigenschaften und fördert schließlich die Ausbildung einer Knochenmetastase. Aus diesem Grund kommt dem CaSR eine Rolle als möglicher prognostischer Marker hinsichtlich der Knochenmetastasierung beim NZK zu. Die Charakteristika des Primärtumors sollten daher die Auswahl des adjuvanten Therapeutikums und die Nachsorgeuntersuchungen beeinflussen. um die Medizin dem Ziel einer individualisierten Therapie näher zu bringen.rn
Resumo:
Inspiriert durch natürlich vorkommende Peptide, sind Poly(2-oxazoline) vielversprechende Kandidaten für Anwendungen in Bereichen des kontrollierten Wirkstoff- bzw. Gentransportes, wie die moderne Biomedizin dies fordert. Da Polyoxazoline als strukturisomere Amide von natürlichen Polypeptiden aufgefasst werden können, zeigen diese synthetischen Polymere in direktem Vergleich erhebliche Vorteile etwa hinsichtlich Zytotoxizät und Effizienz, was wesentlich dazu beitragen kann, aktuelle Hürden biomedizinischer Fragestellungen hinsichtlich Transport und Targeting zu überwinden. Darüber hinaus sollten zylindrische Polymerbürsten aufgrund ihrer molekularen, architekturbedingten Formanisotropie und jüngsten Ergebnissen insbesondere zur formabhängigen Endozytose sehr aussichtsreiche Kandidaten für den Einsatz zum Wirkstofftransport sein.rnrnDie vorliegende Arbeit widmete sich deshalb der Synthese und Charakterisierung von biokompatiblen zylindrischen Poly(2-oxazolin)bürsten als potentielle Nanotransporter von Wirkstoffen, Biomolekülen oder genetischem Material. Als Monomer wurde zunächst 2-Isopropyloxazolin gewählt, da das Polymer eine Phasenübergangstemperatur von 37 °C besitzt, was für Konjugatsynthesen wie auch diverse biomedizinische Applikationen interessant sein kann. Durch terminierende Methacrylamid Funktionalisierung der lebenden kationischen Oxazolinpolymerisation bzw. nachfolgende Endgruppen Transferreaktionen sind Makromonomere im Bereich 1000-5000 g/mol zugänglich. Erstmals gelang es so 2-Oxazolin basierte, hochmolekulare zylindrische Bürsten mit Konturlängen im Bereich von 250 nm mittels „Grafting Through“ Technik in freier radikalischer Polymerisation herzustellen.rnrnAusgehend von der entwickelten Syntheseroute konnten so neben Homo- und Blockcopolymerbürsten von 2-Ethyl-2-oxazolin und 2-Isopropyl-2-oxazolin auch Bürstenmoleküle aus statistischen Copolymeren von 2-Ethyl-2-oxazolin und unsubstituiertem 2-Oxazolin hergestellt werden. Während letztere die Einführung kationischer Gruppen durch selektivere Abspaltmethoden der Formylreste erlauben und so etwa DNA/RNA Komplexierungen ermöglichen können, bietet andererseits der in dieser Arbeit erstmalig demonstrierte Einsatz Azid-funktionalisierter Initiatoren zur kationischen Oxazolinpolymerisation unter Beibehaltung aller anderen sonstigen Reaktionsschritte auch die Möglichkeit der Synthese Azid-Endgruppen-funktionalisierter Makromonomere. Die „Grafting Through“ Methodik der freien radikalischen Makromonomer Polymerisation ist selbst bei diesen funktionalisierten Systemen von großem Vorteil, erlaubt sie auch hier den Zugang zu hochmolekularen Substraten mit einem Pfropfungs- bzw. Funktionalisierungsgrad von 100 %, da jede Seitenkette dieser zylindrischen Bürsten die aussenliegende, und damit sterisch leichter zugängliche funktionale Gruppe trägt. Dabei gelang es die Syntheseroute so zu gestalten, dass es möglich war alle vorgestellten Polymerbürsten mittels statischer und dynamischer Lichtstreuung hinsichtlich absoluter Molmasse und molekularer Dimension zu charakterisieren.rnIn weitereren Reaktionen konnten dann reaktive Fluoreszenzfarbstoffe mit Hilfe kupferfreier 1,3 dipolarerer Addition (kupferfreie „Click-Chemie“) an die Azid-funktionalisierten Polymerbürsten angebunden werden, so dass eine wesentliche Voraussetzung für die Detektion in in vivo und in vitro Experimenten erfüllt werden kann. Darüber hinaus gelingt die quantitative polymeranaloge Umsetzung der Azid- zu Aminogruppen durch eine polymeranalog geführte Reduktion nach Staudinger; damit können an diesen Systemen auch etablierte Konjugationstechniken an Aminogruppen durchgeführt werden. Zudem erlauben die Aminogruppen-haltigen Polymerbürsten durch Protonierung schon bei physiologischem pH die Komplexierung von DNA oder RNA. rnrnErste Lichtstreumessungen in Blutserum zeigen im Falle der kationischen Aminogruppen tragenden Polymerbürsten zwar Aggregation, was aber durch entsprechende Umsetzung nach Konjugation wahrscheinlich unterdrückt werden kann, zeigen doch die entsprechenden Precursorpolymerbürsten mit Azidgruppen in Serum keinerlei Aggregation.rnrnZellaufnahmestudien in dendritische Zellen zeigen nur im Falle einer Azid-funktionalisierten Poly(2-isopropyl-2-oxazolin)bürste eine unspezifische Aufnahme. Die hydrophileren Poly(2-oxazolin)bürsten weise keine unspezifische Aufnahme auf, was eine wichtige Anfoderung für die Verwendung als Polymercarrier in der Krebsimmuntherapie ist.rn
Resumo:
Tiefes Wissen über den Ceramid Stoffwechsel ist rudimentär für das Verständnis der Haut-Pathophysiologie (z.B. für atopische Dermatitis oder Psoriasis ) und unabdingbar für gezielte Therapieansätze. Wenn die zwei wichtigen Barriere Funktionen, gegen transepidermalen Wasserverlust und Pathogene Invasionen undicht werden, sind bestimmte Barriere Komponenten wie z.B. Ceramide stark verändert. In Haut und Hoden führt die Deletion der Ceramid-Synthase 3 zu einem Arrest der epidermalen Reifung und der Spermatogenese, welches ihre Bedeutung für eine intakte Barriere heraushebt. Sphingosin (So), ein Abbauprodukt von Cer, wurde als antimikrobielles Mittel identifiziert. So konnte das Wachstum von Candida albicans hemmen und die Invasion von Pathogenen in tiefere Hautschichten verringern, wodurch ihre mögliche Rolle in der Therapie von Hauterkrankungen gezeigt wurde. Auch eine neue Klasse von Ceramiden, die 1-O-acylceramide, wurde entdeckt. 1-O-acylceramide könnten zu einer funktionellen Wasserdurchlässigkeit Barriere beitragen, da sie zu den hydrophobesten der epidermalen Cers gehören. Die neutrale Glucosylceramidase scheint topologisch mit der 1-Oacylceramid Produktion verbunden zu sein, sowie die Enzyme der Diacylglycerol O-Acyltransferase-2 (DGAT2) Familie eine Rolle dabei spielen könnten. Die Identifizierung der für die 1-O-acylceramid Synthese verantwortlichen Enzyme wir Gegenstand weiterer Forschung sein, jedoch zeigten Untersuchungen an Mäusen, defizient für die saure Ceramidase (Farber-Krankheit), dass Makrophagen ein weiterer potenzieller Produktionsort sein könnten.