866 resultados para Synthesis of Nitrones
Microwave synthesis of calcium bismuth niobate thin films obtained by the polymeric precursor method
Resumo:
The crystal structure, surface morphology and electrical properties of layered perovskite calcium bismuth niobate thin films (CaBi2Nb2O9-CBN) deposited on platinum coated silicon substrates by the polymeric precursor method have been investigated. The films were crystallized in a domestic microwave and in a conventional furnace. X-ray diffraction and atomic force microscopy analysis confirms that the crystallinity and morphology of the films are affected by the different annealing routes. Ferroelectric properties of the films were determined with remanent polarization P-r and a drive voltage V-c of 4.2 mu C/cm(2) and 1.7 V for the film annealed in the conventional furnace and 1.0 mu C/cm(2) and 4.0 V for the film annealed in microwave furnace, respectively. A slight decay after 10(8) polarization cycles was observed for the films annealed in the microwave furnace indicating a reduction of the domain wall mobility after interaction of the microwave energy with the bottom electrode. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Recently, mechanochemical synthesis was widely used in preparation of perovskite type of materials, such as BaTiO3, PbTiO3, PZT, etc. In this work, the possibility of mechanochemical synthesis of CaTiO3 from different precursors, such as CaCO3 or CaO and TiO2 was investigated. Intensive milling of mixture of CaO and TiO2, under optimal milling conditions, resulted in synthesis of single phase CaTiO3. It was also found that intensive milling of powder mixture containing CaCO3 and TiO2 only activate the powders for the sintering process; hence the CaTiO3 could be obtained at lower temperatures of sintering. To complete reaction of CaTiO3 formation during milling it is necessary to reduce CO2 partial pressure, i.e. it is necessary to change the atmosphere inside the vials during milling. In this work, an explanation for difference in milling behavior of different precursors was proposed and discussed. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A more direct and efficient route to the syntheses of [Ru(NH3)(4)(X-Y)](BF4)(2), where X-Y can be 2-acetylpyridine (2-acpy) or 2-benzoylpyridine (2-bzpy), based on the reactions of [RuCl(NH3)(5)]Cl-2 with these ortho-substituted azines is described. The [Ru(2-acpy)(NH3)(4)](BF4)(2) and [Ru(NH3)(5)(2-bzpy)](BF4)(2) complexes have a molar conductance of 328 and 292 Ohm(-1) cm(2) mol(-1), respectively, corresponding to a 1:2 species in solution. These complexes showed two intense absorption bands around 620-650 and 380 nm, the energies of which are solvent dependent, decreasing with the increase of the Gutman's donor number of the solvent, and were assigned as metal-to-ligand charge transfer (MLCT). The complexes have oxidation potentials (Ru-II/III) of +0.380 V vs. Ag/AgCl (2-acpy) and +0.400 V vs. Ag/AgCl (2-bzpy), and reduction potentials (X-Y0/-) of -1.10 V vs. Ag/AgCl (2-acpy) and -0.950 V vs. Ag/AgCl (2-bzpy) on CF3COOH/NaCF3COO at pH=3.0, scan rate 100 mV s(-1), [Ru]=1.0x10(-3) mol l(-1). Both processes show a coupled chemical reaction. Upon oxidation of the metal center, the MLCT absorption bands are bleached and restored upon subsequent reduction. In order to confirm the structure of the complexes a detailed LH NMR investigation was performed in d(6)-acetone. Further confirmation of the structure was obtained by recording the N-15 NMR spectrum of [Ru(NH3)(4)(2-bzpy)](2+) in d(6)-DMSO using the INEPT pulse sequence improving the sensitivity of N-15 by polarization transfer from the protons to the N-15. The Nuclear Overhauser Effect (NOE) experiments were made qualitatively for [Ru(NH3)(4)(2-acpy)](2+), and showed that H-6 of the pyridine is close to a NH3 proton, which should then be in a cis position, and, hence, confirming that acpy is acting as a bidentate ligand. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
A polymeric precursor method based on the Pechini process was successfully used to synthesize zirconia-12 mol% ceria ceramic powders, the influence of the main process variables (citric acid-ethylene glycol ratio, citric acid-total oxides ratio and calcination temperature) on phase formation and powder morphology (surface area and crystallite size) were investigated. The thermal decomposition behavior of the precursor is presented. X-ray diffraction (XRD) patterns of powders revealed a crystalline tetragonal zirconia single-phase, with crystallite diameter ranging from 6 to 15 nm. The BET surface areas were relatively high, reaching 95 m(2) g(-1) Nitrogen adsorption/desorption on the powders suggested that nonaggregated powders could be attained, depending on the synthesis conditions. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
Polycrystalline Co7Sb2O12 compounds have been synthesized by a chemical route, which is based on a modified polymeric precursor method. In order to study the physical properties of the samples, X-ray diffraction (XRD), thermal analyses (TG and DSC), infrared spectroscopy (IR), specific surface area (BET), and magnetization measurements were performed on these materials. Characterization through XRD revealed that the samples are single-phase after a heat-treatment at 1100degreesC for 2h, while the X-ray patterns of the samples heat-treated at lower temperatures revealed the presence of additional Bragg reflections belonging to the Co6Sb2O6 phase. These data were analyzed by means of Rietveld refinement and further analyze showed that Co7Sb2O12 displays an inverse spinel crystalline structure. In this structure, the Co2+ ions occupy the eight tetrahedral positions, and the sixteen octahedral positions are randomly occupied by the Sb5+ and Co2+ ions. IR studies disclosed two strong absorption bands, v(1) and v(2), in the expected spectral range for a spinel-type binary oxide with space group Fd3m. Exploratory studies concerning the magnetic properties indicated that this sample presents a spin-glass transition at T-f similar to 64 K. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Experiments were performed to (1) verify the inhibitory effect of bovine trophoblast protein-1 (bTP-1) on uterine prostaglandin synthesis, (2) evaluate whether other interferon-alpha (IFN-alpha) molecules also inhibit prostaglandin secretion, and (3) test whether the enzyme 2',5'-oligoadenylate synthetase (2-5A synthetase) can be induced in endometrium by interferon-alpha. In experiment 1, all interferon molecules (bTP-1, oTP-1, bIFN-alpha and hIFN-alpha) equally inhibited secretion of PGF and PGE2 from endometrial explant cultures obtained at day 17 of the estrous cycle. In experiment 2, endometrial explants obtained from day 17 of the cycle were cultured with and without bovine serum albumin (BSA; 50-mu-g/ml) and bIFN-alpha (0, 0.84, 4.2, and 42 nM). Addition of BSA to the culture medium greatly enhanced the accumulation of PGF into the medium. The bIFN-alpha inhibited accumulation of PGF and PGE2 in both the presence or absence of BSA by 12 h. All three concentrations of bIFN-alpha were equally effective in inhibiting prostaglandin accumulation. Additionally, all concentrations of bIFN-alpha increased the amounts of 2-5A synthetase in endometrium. In conclusion, these results confirm the inhibitory effect of bTP-1 on PGF release from endometrium and demonstrate that bTP-1 can also inhibit PGE2 secretion. Furthermore, other interferon-alpha molecules, including bIFN-alpha, hIFN-alpha, and oTP-1, also reduced PGF and PGE2 secretion in culture. It is likely, therefore, that conceptus and other interferon-alpha molecules exert similar effects on endometrium in vitro and that the antiluteolytic effects of bIFN-alpha in vivo are mediated in part by changes in endometrial prostaglandin synthesis.
Resumo:
A simple, cheap and versatile, polyol-mediated fabrication method has been extended to the synthesis of tin oxide nanoparticles on a large scale. Ultrafine SnO2 nanoparticles with crystallite sizes of less than 5 nm were realized by refluxing SnCl2 . 2H(2)O in ethylene glycol at 195 degrees C for 4 h under vigorous stirring in air. The as-prepared SnO2 nanoparticles exhibited enhanced Li-ion storage capability and cyclability, demonstrating a specific capacity of 400 mAh g(-1) beyond 100 cycles. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Synthesis and self-assembly of nanomaterials can be controlled by the properties of soft matter. on one hand, dedicated nanoreactors such as reverse microemulsions or miniemulsions can be designed. on the other hand, direct shape control can be provided by the topology of liquid crystals that confine the reacting medium within a specific geometry. In the first case, the preparation of micro- or miniemulsions generally requires energetic mechanical stirring. The second approach uses thermodynamically stable systems, but it remains usually limited to binary (water + surfactant) systems. We report the preparation of different families of materials in highly ordered quaternary mediums that exhibit a liquid crystal structure with a high cell parameter. They were prepared with the proper ratios of salted water, nonpolar solvent, surfactant. and cosurfactants that form spontaneously swollen hexagonal phases. These swollen liquid crystals can be prepared from all classes of surfactants (cationic, anionic, and nonionic). They contain a regular network of parallel cylinders, whose diameters can be swollen with a nonpolar solvent, that are regularly spaced in a continuous aqueous salt solution. We demonstrate in the present report that both aqueous and organic phases can be used as nanoreactors for the preparation of materials. This property is illustrated by various examples such as the synthesis of platinum nanorods prepared in the aqueous phase or zirconia needles or the photo- or gamma-ray-induced polymerization of polydiacetylene in the organic phase. In all cases, materials can be easily extracted and their final shapes are directed by the structure-directing effect imposed by the liquid crystal.
Resumo:
1-Benzoyl-3-benzylguanidine and 1-benzoyl-3-benzyl-O-ethylisourea were synthesized in good yields (68 and 76%, respectively) from 1-benzoyl-3-benzylthiourea and benzoyl-ethylthiocarbamate in dry media conditions using KF-Al2O3 under microwave irradiation. Strong nucleophilic amines promoted the sulfur elimination by attack on the thiocarbonyl group in both thiourea and thiocarbamates to afford guanidines and isourea, respectively. Transesterification products were obtained from p-TsOH catalyzed reaction of thiocarbamate with alcohols under MW-solvent-free conditions. Very important non-purely thermal MW specific effects were evidenced and attributed to stabilization by coulombic interactions between materials and waves. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
CaMoO4 (CMO) disordered and ordered thin films were prepared by the complex polymerization method (CPM). The films were annealed at different temperatures and time in a conventional resistive furnace (RF) and in a microwave (MW) oven. The microstructure and surface morphology of the structure were monitored by atomic force microscopy (AFM) and high-resolution scanning electron microscopy (HRSEM). Order and disorder were characterized by X-ray diffraction (XRD) and optical reflectance. A strong photoluminescence (PL) emission was observed in the disordered thin films and was attributed to complex cluster vacancies. The experimental results were compared with density functional and Hartree-Fock calculations. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Tin oxide (SnO) powders were obtained by the microwave-assisted hydrothermal synthesis technique using SnCl2 center dot 2H(2)O as a precursor. By changing the hydrothermal processing time, temperature, the type of mineralizing agent (NaOH, KOH or NH4 OH) and its concentration, SnO crystals having different sizes and morphologies could be achieved. The powders were characterized by X-ray diffraction (X-ray), Field Emission Scanning Electron Microscopy (FE-SEM), High Resolution Transmission Electron Microscopy (HR-TEM) and Selected Area Electron Diffraction (SAED). The results showed that plate-like form is the characteristic morphology of growth and the TEM analyses indicate the growth direction as (200). (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)