986 resultados para Structural determination
Resumo:
An analytical method using microwave-assisted extraction (MAE) and liquid chromatography (LC) with fluorescence detection (FD) for the determination of ochratoxin A (OTA) in bread samples is described. A 24 orthogonal composite design coupled with response surface methodology was used to study the influence of MAE parameters (extraction time, temperature, solvent volume, and stirring speed) in order to maximize OTA recovery. The optimized MAE conditions were the following: 25 mL of acetonitrile, 10 min of extraction, at 80 °C, and maximum stirring speed. Validation of the overall methodology was performed by spiking assays at five levels (0.1–3.00 ng/g). The quantification limit was 0.005 ng/g. The established method was then applied to 64 bread samples (wheat, maize, and wheat/maize bread) collected in Oporto region (Northern Portugal). OTAwas detected in 84 % of the samples with a maximum value of 2.87 ng/g below the European maximum limit established for OTA in cereal products of 3 ng/g.
Resumo:
Over the last few years, there has been a growing concern about the presence of pharmaceuticals in the environment. The main objective of this study was to develop and validate an SPE method using surface response methodology for the determination of ibuprofen in different types of water samples. The influence of sample pH and sample volume on the ibuprofen recovery was studied. The effect of each studied independent variable is pronounced on the dependent variable (ibuprofen recovery). Good selectivity, extraction efficiency, and precision were achieved using 600 mL of sample volume with the pH adjusted to 2.2. LC with fluorescence detection was employed. The optimized method was applied to 20 water samples from the North and South of Portugal.
Resumo:
Thin films of Cu2SnS3 and Cu3SnS4 were grown by sulfurization of dc magnetron sputtered Sn–Cu metallic precursors in a S2 atmosphere. Different maximum sulfurization temperatures were tested which allowed the study of the Cu2SnS3 phase changes. For a temperature of 350 ◦C the films were composed of tetragonal (I -42m) Cu2SnS3. The films sulfurized at a maximum temperature of 400 ◦C presented a cubic (F-43m) Cu2SnS3 phase. On increasing the temperature up to 520 ◦C, the Sn content of the layer decreased and orthorhombic (Pmn21) Cu3SnS4 was formed. The phase identification and structural analysis were performed using x-ray diffraction (XRD) and electron backscattered diffraction (EBSD) analysis. Raman scattering analysis was also performed and a comparison with XRD and EBSD data allowed the assignment of peaks at 336 and 351 cm−1 for tetragonal Cu2SnS3, 303 and 355 cm−1 for cubic Cu2SnS3, and 318, 348 and 295 cm−1 for the Cu3SnS4 phase. Compositional analysis was done using energy dispersive spectroscopy and induced coupled plasma analysis. Scanning electron microscopy was used to study the morphology of the layers. Transmittance and reflectance measurements permitted the estimation of absorbance and band gap. These ternary compounds present a high absorbance value close to 104 cm−1. The estimated band gap energy was 1.35 eV for tetragonal (I -42m) Cu2SnS3, 0.96 eV for cubic (F-43m) Cu2SnS3 and 1.60 eV for orthorhombic (Pmn21) Cu3SnS4. A hot point probe was used for the determination of semiconductor conductivity type. The results show that all the samples are p-type semiconductors. A four-point probe was used to obtain the resistivity of these samples. The resistivities for tetragonal Cu2SnS3, cubic Cu2SnS3 and orthorhombic (Pmn21) Cu3SnS4 are 4.59 × 10−2 cm, 1.26 × 10−2 cm, 7.40 × 10−4 cm, respectively.
Resumo:
Cu2ZnSnS4 is a promising semiconductor to be used as absorber in thin film solar cells. In this work, we investigated optical and structural properties of Cu2ZnSnS4 thin films grown by sulphurization of metallic precursors deposited on soda lime glass substrates. The crystalline phases were studied by X-ray diffraction measurements showing the presence of only the Cu2ZnSnS4 phase. The studied films were copper poor and zinc rich as shown by inductively coupled plasma mass spectroscopy. Scanning electron microscopy revealed a good crystallinity and compactness. An absorption coefficient varying between 3 and 4×104cm−1 was measured in the energy range between 1.75 and 3.5 eV. The band gap energy was estimated in 1.51 eV. Photoluminescence spectroscopy showed an asymmetric broad band emission. The dependence of this emission on the excitation power and temperature was investigated and compared to the predictions of the donor-acceptor-type transitions and radiative recombinations in the model of potential fluctuations. Experimental evidence was found to ascribe the observed emission to radiative transitions involving tail states created by potential fluctuations.
Resumo:
Adhesive bonding has become more efficient in the last few decades due to the adhesives developments, granting higher strength and ductility. On the other hand, natural fibre composites have recently gained interest due to the low cost and density. It is therefore essential to predict the fracture behavior of joints between these materials, to assess the feasibility of joining or repairing with adhesives. In this work, the tensile fracture toughness (Gc n) of adhesive joints between natural fibre composites is studied, by bonding with a ductile adhesive and co-curing. Conventional methods to obtain Gc n are used for the co-cured specimens, while for the adhesive within the bonded joint, the J-integral is considered. For the J-integral calculation, an optical measurement method is developed for the evaluation of the crack tip opening and adherends rotation at the crack tip during the test, supported by a Matlab sub-routine for the automated extraction of these quantities. As output of this work, an optical method that allows an easier and quicker extraction of the parameters to obtain Gc n than the available methods is proposed (by the J-integral technique), and the fracture behaviour in tension of bonded and co-cured joints in jute-reinforced natural fibre composites is also provided for the subsequent strength prediction. Additionally, for the adhesively- bonded joints, the tensile cohesive law of the adhesive is derived by the direct method.
Resumo:
Component joining is typically performed by welding, fastening, or adhesive-bonding. For bonded aerospace applications, adhesives must withstand high-temperatures (200°C or above, depending on the application), which implies their mechanical characterization under identical conditions. The extended finite element method (XFEM) is an enhancement of the finite element method (FEM) that can be used for the strength prediction of bonded structures. This work proposes and validates damage laws for a thin layer of an epoxy adhesive at room temperature (RT), 100, 150, and 200°C using the XFEM. The fracture toughness (G Ic ) and maximum load ( ); in pure tensile loading were defined by testing double-cantilever beam (DCB) and bulk tensile specimens, respectively, which permitted building the damage laws for each temperature. The bulk test results revealed that decreased gradually with the temperature. On the other hand, the value of G Ic of the adhesive, extracted from the DCB data, was shown to be relatively insensitive to temperature up to the glass transition temperature (T g ), while above T g (at 200°C) a great reduction took place. The output of the DCB numerical simulations for the various temperatures showed a good agreement with the experimental results, which validated the obtained data for strength prediction of bonded joints in tension. By the obtained results, the XFEM proved to be an alternative for the accurate strength prediction of bonded structures.
Resumo:
An electrochemical sensor has been developed for the determination of the herbicide bentazone, based on a GC electrode modified by a combination of multiwalled carbon nanotubes (MWCNT) with b-cyclodextrin (b-CD) incorporated in a polyaniline film. The results indicate that the b-CD/MWCNT modified GC electrode exhibits efficient electrocatalytic oxidation of bentazone with high sensitivity and stability. A cyclic voltammetric method to determine bentazone in phosphate buffer solution at pH 6.0, was developed, without any previous extraction, clean-up, or derivatization steps, in the range of 10–80 mmolL 1, with a detection limit of 1.6 mmolL 1 in water. The results were compared with those obtained by an established HPLC technique. No statistically significant differences being found between both methods.
Resumo:
Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas
Resumo:
The TEM family of enzymes has had a crucial impact on the pharmaceutical industry due to their important role in antibiotic resistance. Even with the latest technologies in structural biology and genomics, no 3D structure of a TEM- 1/antibiotic complex is known previous to acylation. Therefore, the comprehension of their capability in acylate antibiotics is based on the protein macromolecular structure uncomplexed. In this work, molecular docking, molecular dynamic simulations, and relative free energy calculations were applied in order to get a comprehensive and thorough analysis of TEM-1/ampicillin and TEM-1/amoxicillin complexes. We described the complexes and analyzed the effect of ligand binding on the overall structure. We clearly demonstrate that the key residues involved in the stability of the ligand (hot-spots) vary with the nature of the ligand. Structural effects such as (i) the distances between interfacial residues (Ser70−Oγ and Lys73−Nζ, Lys73−Nζ and Ser130−Oγ, and Ser70−Oγ−Ser130−Oγ), (ii) side chain rotamer variation (Tyr105 and Glu240), and (iii) the presence of conserved waters can be also influenced by ligand binding. This study supports the hypothesis that TEM-1 suffers structural modifications upon ligand binding.
Resumo:
Biophysical Chemistry 110 (2004) 83–92
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil
Resumo:
FEBS Letters 579 (2005) 4585–4590
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Bioquímica, ramo de Bioquímica-Física, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Myocardial perfusion gated-single photon emission computed tomography (gated-SPECT) imaging is used for the combined evaluation of myocardial perfusion and left ventricular (LV) function. The aim of this study is to analyze the influence of counts/pixel and concomitantly the total counts in the myocardium for the calculation of myocardial functional parameters. Material and methods: Gated-SPECT studies were performed using a Monte Carlo GATE simulation package and the NCAT phantom. The simulations of these studies use the radiopharmaceutical 99mTc-labeled tracers (250, 350, 450 and 680MBq) for standard patient types, effectively corresponding to the following activities of myocardium: 3, 4.2, 5.4-8.2MBq. All studies were simulated using 15 and 30s/projection. The simulated data were reconstructed and processed by quantitative-gated-SPECT software, and the analysis of functional parameters in gated-SPECT images was done by using Bland-Altman test and Mann-Whitney-Wilcoxon test. Results: In studies simulated using different times (15 and 30s/projection), it was noted that for the activities for full body: 250 and 350MBq, there were statistically significant differences in parameters Motility and Thickness. For the left ventricular ejection fraction (LVEF), end-systolic volume (ESV) it was only for 250MBq, and 350MBq in the end-diastolic volume (EDV), while the simulated studies with 450 and 680MBq showed no statistically significant differences for global functional parameters: LVEF, EDV and ESV. Conclusion: The number of counts/pixel and, concomitantly, the total counts per simulation do not significantly interfere with the determination of gated-SPECT functional parameters, when using the administered average activity of 450MBq, corresponding to the 5.4MBq of the myocardium, for standard patient types.
Resumo:
This paper intends to evaluate the capacity of producing concrete with a pre-established performance (in terms of mechanical strength) incorporating recycled concrete aggregates (RCA) from different sources. To this purpose, rejected products from the precasting industry and concrete produced in laboratory were used. The appraisal of the self-replication capacity was made for three strength ranges: 15-25 MPa, 35-45 MPa and 65-75 MPa. The mixes produced tried to replicate the strength of the source concrete (SC) of the RA. Only total, (100%) replacement of coarse natural aggregates (CNA) by coarse recycled concrete aggregates (CRCA) was tested. The results show that, both in mechanical and durability terms, there were no significant differences between aggregates from controlled sources and those from precast rejects for the highest levels of the target strength. Furthermore, the performance losses resulting from the RA's incorporation are substantially reduced when used medium or high strength SC's. (C) 2014 Elsevier Ltd. All rights reserved.