981 resultados para Spin excitation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We consider a N - S box system consisting of a rectangular conductor coupled to a superconductor. The Green functions are constructed by solving the Bogoliubov-de Gennes equations at each side of the interface, with the pairing potential described by a step-like function. Taking into account the mismatch in the Fermi wave number and the effective masses of the normal metal - superconductor and the tunnel barrier at the interface, we use the quantum section method in order to find the exact energy Green function yielding accurate computed eigenvalues and the density of states. Furthermore, this procedure allow us to analyze in detail the nontrivial semiclassical limit and examine the range of applicability of the Bohr-Sommerfeld quantization method.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We show that the partition function of the super eigenvalue model satisfies, for finite N (non-perturbatively), an infinite set of constraints with even spins s = 4, 6, . . . , ∞. These constraints are associated with half of the bosonic generators of the super (W∞/2 ⊕ W1+∞/2) algebra. The simplest constraint (s = 4) is shown to be reducible to the super Virasoro constraints, previously used to construct the model.
Resumo:
We use the Weyl-van der Waerden spinor technique to construct helicity wave functions for massless and massive spin-3/2 fermions. We apply our formalism to evaluate helicity amplitudes taking into account some phenomenological couplings involving these particles.
Resumo:
Spin incommensurability (IC) has been recently experimentally discovered in the hole-doped Ni-oxide chain compound Y2-xCaxBaNiO5 [G. Xu et al., Science 289, 419 (2000)]. Here a two orbital model for this material is studied using computational techniques. Spin IC is observed in a wide range of densities and couplings. The phenomenon originates in antiferromagnetic correlations across holes dynamically generated to improve hole movement, as it occurs in the one-dimensional Hubbard model and in recent studies of the two-dimensional extended t-J model. The close proximity of ferromagnetic and phase-separated states in parameter space is also discussed.
Resumo:
We derive an infinite set of conserved charges for some Z(N) symmetric quantum spin models by constructing their Lax pairs. These models correspond to the Potts model, Ashkin-Teller model and the particular set of self-dual Z(N) models solved by Fateev and Zamolodchikov [6]. The exact ground state energy for this last family of hamiltonians is also presented. © 1986.
Resumo:
In this work it is discussed the performance of the reactive power demand in three-leg transformer core and three-phase transformer bank, under different conditions of AC/DC double excitation. In order to analyse the influence of double excitation in reactive power theoretically a mathematical model was developed considering the mutual coupling between phases and the magnetic nonlinearity. The validity of the proposed model is verified by means of the experimental and simulated results.
Resumo:
A renormalization-group calculation of the temperature-dependent nuclear spin relaxation rate for a magnetic impurity in a metallic host is reported. The calculation follows a simplified procedure, which produces accurate rates in the low-temperature Fermi-liquid regime, although yielding only qualitatively reliable results at higher temperatures. In all cases considered, as the temperature T diminishes, the rates peak before decaying linearly to zero in the Fermi-liquid range. For T → 0, the results agree very well with Shiba's expression relating the low-temperature coefficient of the relaxation rate to the squared zero-temperature susceptibility. In the Kondo limit, the enhanced susceptibility associated with the Kondo resonance produces a very sharp peak in the relaxation rate near the Kondo temperature. © 1991.