950 resultados para Somatic hybridization
Resumo:
Surgical treatment of lumbar spinal stenosis (LSS) is a treatment option for those patients who remain severely symptomatic after a course of conservative treatment. Majority of the patients treated surgically enjoy good-to-excellent outcomes with respect to pain alleviation and functional recovery. However, between 20% and 40% of the patients who have surgery for LSS do not benefit from it. The knowledge of the psychological factors associated with recovery and treatment outcome is still scarce. The aim of this study was to assess LSS patients selected for surgical treatment. Specifically, the study assessed the prevalence of depression (Beck Depression Inventory, BDI) before surgical treatment and three months after the treatment. Also preoperative life satisfaction (four-item Life Satisfaction scale) of the LSS patients was studied. Furthermore, the patients satisfaction with surgery outcome at the three months postoperative stage was studied. One-fifth (20%) of the LSS-patients were found to have depression preoperatively. The patients assessments of the pain intensity or location were not associated with depression. The factors that did associate with depression were subjective disability of everyday living and poor life satisfaction. In addition to this, low sense of coherence and poor life satisfaction were associated with depression in logistic regression models. Significant associations were seen between preoperative depression and postoperative high disability scores, high symptom severity scores and higher pain intensity ratings. The patients with continuous depression (60% of the patients who had preoperative depression) showed less improvement in symptom severity, disability, pain and walking capacity than the patients who did not experience depression at any stage. In those patients who recovered from depression (35% of the patients with preoperative depression), the postoperative improvement was rather similar to the improvement seen in the normal mood group. One-fourth (25%) of the preoperative patients with LSS were found to be dissatisfied with life. The dissatisfied patients were significantly younger and had more self-reported somatic comorbidity. The dissatisfied patients had also elevated subjective disability scores and more extensive pain locations. Also lower coping resources and higher BDI scores were associated with life dissatisfaction. Younger age and somatic comorbidity were associated with life dissatisfaction in regression models. Two-thirds (66%) of the patients were at least clearly satisfied with the surgery outcome at three months postoperative stage. In group comparisons, the lack of physical, functional and emotional well-being was associated with the patients dissatisfaction with the surgery outcome. Younger age, postoperative symptom severity, disability and depression were independently associated with dissatisfaction with the surgery outcome. The results show that depression and psychological well-being are important factors with respect to LSS patients functional ability and recovery both before and three months after surgical treatment. Therefore, the clinical practice recommendations should include an assessment of depression
Resumo:
Phosphocholine (PCho) is an important substituent of surface structures expressed by a number of bacterial pathogens. Its role in virulence has been investigated in several species, in which it has been shown to play a role in bacterial adhesion to mucosal surfaces, in resistance to antimicrobial peptides, or in sensitivity to complement-mediated killing. The lipopolysaccharide (LPS) structure of Pasteurella multocida strain Pm70, whose genome sequence is known, has recently been determined and does not contain PCho. However, LPS structures from the closely related, virulent P. multocida strains VP161 and X-73 were shown to contain PCho on their terminal galactose sugar residues. To determine if PCho was involved in the virulence of P. multocida, we used subtractive hybridization of the VP161 genome against the Pm70 genome to identify a four-gene locus (designated pcgDABC) which we show is required for the addition of the PCho residues to LPS. The proteins predicted to be encoded by pcgABC showed identity to proteins involved in choline uptake, phosphorylation, and nucleotide sugar activation of PCho. We constructed a P. multocida VP161 pcgC mutant and demonstrated that this strain produces LPS that lacks PCho on the terminal galactose residues. This pcgC mutant displayed reduced in vivo growth in a chicken infection model and was more sensitive to the chicken antimicrobial peptide fowlicidin-1 than the wild-type P. multocida strain
Resumo:
A reverse line blot hybridization (RLB) one-stage nested PCR (nPCR) for Anaplasma centrale and a nested PCR for Anaplasma marginale were used to detect infected cattle grazing within an endemic region in Israel. A novel set of PCR primers and oligonucleotide probes based on a 16S ribosomal RNA gene was designed for RLB detection of both Anaplasma species, and the performance of the molecular assays compared. The immunofluorescent antibody test (IFA) was used to detect antibodies to both Anaplasma species, whereas, a highly sensitive and specific competitive enzyme-linked immunosorbent assay (cELISA) was used to detect antibodies in A. centrale-vaccinated cattle. The RLB and the nested PCR procedures showed bacteremia with sensitivity of 50 infected erythrocytes per milliliter. Up to 93% of the A. centrale vaccinates carried specific antibodies that were detected by cELISA, and up to 71% of the vaccinated cattle were found to be naturally infected with A. marginale according to the PCR and the RLB assays. Nevertheless, no severe outbreaks of A. marginale infection occurred among vaccinated herds in this endemic region. It appears that both, molecular tools and serology are useful for evaluation of the vaccine efficacy. In the light of wide natural field infection with A. marginale, strong recommendations to continue the A. centrale vaccination program regime will continue until a new generation of non-blood-based vaccine will be developed.
Resumo:
A stretch of 71 nucleotides in a 1.2 kilobase pair Pst I fragment of rice DNA was identified as tRNA~ gene by hybridization and nucleotide sequence analyses. The hybridization of genomic DNA with the tRNA gene showed that there are about 10 glycine tRNA genes per diploid rice genome. The 3' and 5' internal control regions, where RNA polymerase III and transcription factors bind, were found to be present in the coding sequence. The gene was transcribed into a 4S product in an yeast cell-free extract. The substitution of 5' internal control region with analogous sequences from either M13mpl9 or M13mpl8 DNA did not affect the transcription of the gene in vitro. The changes in three highly conserved nucleotides in the consensus 5' internal control region (RGYNNARYGG; R = purine, Y = pyrimidine, N = any nucleotide) did not affect transcription showing that these nucleotides are not essential for promotion of transcription. There were two 16 base pair repeats, 'TGTTTGTTTCAGCTTA' at - 130 and - 375 positions upstream from the start of the gene. Deletion of 5' flanking sequences including the 16 base pair repeat at - 375 showed increased transcription indicating that these sequences negatively modulate the expression of the gene.
Resumo:
In clinical settings impulsivity refers to a symptom of psychiatric disorder, but nonclinically oriented research treats impulsivity as a personality and temperament dimension. This prospective study examined whether impulsivity predicts adverse health-related behaviour and increased risk of health problems in a large, nonclinical sample of 5433 subjects working in 12 Finnish hospitals. The data were collected using two questionnaire surveys at a 2-year interval. After controlling for alcohol use at baseline, higher impulsivity predicted increased alcohol consumption at follow-up in both genders (p < .01) and was associated with increased likelihood of becoming a heavy drinker or taking up smoking (p < .05). Impulsivity also predicted an increased number of cigarettes smoked per day in the follow-up among women (p < .001), but not among men, although adjustment for the number of cigarettes smoked at baseline attenuated these associations (p = .08 for women). In men, higher impulsivity was associated with shorter sleep duration and waking up several times per night independent of baseline characteristics (p < .01), whereas in women, higher impulsivity predicted difficulty in falling asleep and waking up feeling tired after the usual amount of sleep (p < .05). In women, these associations became nonsignificant after adjustment for pre-existing somatic and psychiatric diseases. Finally, higher impulsivity was associated with an increased 2-year incidence of physician-diagnosed peptic ulcer disease (adjusted odds ratio (OR) = 2.42, 95% confidence interval (CI) = 1.21 - 4.82) and onset of depression (OR = 1.95, 95% CI = 1.28 - 2.97) after adjustment for a variety of baseline covariates. In conclusion, this study shows that in a nonclinical population, impulsivity appears to be a risk factor for various unhealthy behaviour and health problems.
Resumo:
Nucleosome core particles and oligonucleosomes were isolated by digesting rat testis nuclei with micrococcal nuclease to 20% acid-solubility, followed by fractionation of the digest on a Bio-Gel A-5m column. The core particles thus isolated were characterized on the basis of their DNA length of 151 +/- 5 base-pairs and sedimentation coefficient of 11.4S. Analysis of the acid-soluble proteins of the core particles indicated that histones TH2B and X2 are constituents of the core particles, in addition to the somatic histones H2A, H2B, H3 and H4. The acid-soluble proteins of the oligonucleosomes comprised all the histones, including both the somatic (H1, H2A, H2B, H3, H4 and X2) and the testis-specific ones (TH1 and TH2B). It was also observed that histones TH1 and H1 are absent from the core particles and were readily extracted from the chromatin by 0.6 M-NaCl, which indicated that both of them are bound to the linker DNA.
Resumo:
A comparison of the DNase I digestion products of the 32P-5’-end-labeled pachytene nucleosome core particles (containing histones H2A, TH2A, X2, H2B, THPB, H3a, nd H4) and liver nucleosome core particles (containing somatic histones H2A, H2B, H3, and H4) revealed that the cleavage sites that are 30, 40, and 110 nucleotidesa way from the 5’-enda re significantly more accessiblei n the pachytene core particles than in the liver core particles. These cleavage sites correspond to the region wherein H2B interacts with the nucleosome core DNA. These results, therefore, suggest that the histone-DNA interactiona t these sites in the pachytene core particles is weaker, possibly because of the presence of the histone variant THBB interacting at similar topological positions in the nucleosome core as that of its somatic counterpart H2B. Such a loosened structumrea y also be maintainede ven in the native pachytene chromatin since micrococcal nuclease digestion of pachytene nuclei resulted in a higher ratio of subnucleosomes (SN4 + SN?) to mononucleosomes than that observed liinv er chromatin
Resumo:
1. The conservation status of the dingo Canis familiaris dingo is threatened by hybridization with the domestic dog C. familiaris familiaris. A practical method that can estimate the different levels of hybridization in the field is urgently required so that animals below a specific threshold of dingo ancestry (e.g. 1/4 or 1/2 dingoes) can reliably be identified and removed from dingo populations. 2. Skull morphology has been traditionally used to assess dingo purity, but this method does not discriminate between the different levels of dingo ancestry in hybrids. Furthermore, measurements can only be reliably taken from the skulls of dead animals. 3. Methods based on the analysis of variation in DNA are able to discriminate between the different levels of hybridization, but the validity of this method has been questioned because the materials currently used as a reference for dingoes are from captive animals of unproven genetic purity. The use of pre-European materials would improve the accuracy of this method, but suitable material has not been found in sufficient quantity to develop a reliable reference population. Furthermore, current methods based on DNA are impractical for the field-based discrimination of hybrids because samples require laboratory analysis. 4. Coat colour has also been used to estimate the extent of hybridization and is possibly the most practical method to apply in the field. However, this method may not be as powerful as genetic or morphological analyses because some hybrids (e.g. Australian cattle dog × dingo) are similar to dingoes in coat colour and body form. This problem may be alleviated by using additional visual characteristics such as the presence/absence of ticking and white markings.
Resumo:
Hybridization is an important biological phenomenon that can be used to understand the evolutionary process of speciation of plants and their associated pests and diseases. Interactions between hybrid plants and the herbivores of the parental taxa may be used to elucidate the various cues being used by the pests for host location or other processes. The chemical composition of plants, and their physical foliar attributes, including leaf thickness, trichome density, moisture content and specific leaf weight were compared between allopatric pure and commercial hybrid species of Corymbia, an important subtropical hardwood taxon. The leaf-eating beetle Paropsis atomaria, to which the pure taxa represented host (C. citriodora subsp. variegata) and non-host (C. torelliana) plants, was used to examine patterns of herbivory in relation to these traits. Hybrid physical foliar traits, chemical profiles, and field and laboratory beetle feeding preference, while showing some variability, were generally intermediate to those exhibited by parent taxa, thus suggesting an additive inheritance pattern. The hybrid susceptibility hypothesis was not supported by our field or laboratory studies, and there was no strong relationship between adult preference and larval performance. The most-preferred adult host was the sympatric taxon, although this species supported the lowest larval survival, while the hybrid produced significantly smaller pupae than the pure species. The results are discussed in relation to plant chemistry and physical characteristics. The findings suggest a chemical basis for host selection behavior and indicate that it may be possible to select for resistance to this insect pest in these commercially important hardwood trees.
Resumo:
Although the applications of Auger electron spectroscopy in surface analysis have by far outweighed its use as a tool to investigate electron states of solids and surfaces, there are a variety of situations where Auger spectroscopy provides unique information. Apart from the chemical shifts, Auger intensities are useful in determining the number of d-electron states in transition metal systems. Auger spectroscopy is a good probe to investigate the surface oxidation of metals. In addition to the intra-atomic Auger transitions, inter-atomic transitions observed in oxides and other systems reveal the nature of electron states of surfaces. Charge-transfer and hybridization effects in alloys are also usefully studied by Auger spectroscopy. Auger electron spectroscopy has not been a popular technique to investigate adsorption of molecules on surfaces, but the technique is useful to obtain fingerprints of surface species.
Resumo:
γ-aminobutyric acid (GABA) is the main inhibitory transmitter in the nervous system and acts via three distinct receptor classes: A, B, and C. GABAC receptors are ionotropic receptors comprising ρ subunits. In this work, we aimed to elucidate the expression of ρ subunits in the postnatal brain, the characteristics of ρ2 homo-oligomeric receptors, and the function of GABAC receptors in the hippocampus. In situ hybridization on rat brain slices showed ρ2 mRNA expression from the newborn in the superficial grey layer of the superior colliculus, from the first postnatal week in the hippocampal CA1 region and the pretectal nucleus of the optic tract, and in the adult dorsal lateral geniculate nucleus. Quantitative RT-PCR revealed expression of all three ρ subunits in the hippocampus and superior colliculus from the first postnatal day. In the hippocampus, ρ2 mRNA expression clearly dominated over ρ1 and ρ3. GABAC receptor protein expression was confirmed in the adult hippocampus, superior colliculus, and dorsal lateral geniculate nucleus by immunohistochemistry. From the selective distribution of ρ subunits, GABAC receptors may be hypothesized to be specifically involved in aspects of visual image motion processing in the rat brain. Although previous data had indicated a much higher expression level for ρ2 subunit transcripts than for ρ1 or ρ3 in the brain, previous work done on Xenopus oocytes had suggested that rat ρ2 subunits do not form functional homo-oligomeric GABAC receptors but need ρ1 or ρ3 subunits to form hetero-oligomers. Our results demonstrated, for the first time, that HEK 293 cells transfected with ρ2 cDNA displayed currents in whole-cell patch-clamp recordings. Homomeric rat ρ2 receptors had a decreased sensitivity to, but a high affinity for picrotoxin and a marked sensitivity to the GABAC receptor agonist CACA. Our results suggest that ρ2 subunits may contribute to brain function, also in areas not expressing other ρ subunits. Using extracellular electrophysiological recordings, we aimed to study the effects of the GABAC receptor agonists and antagonists on responses of the hippocampal neurons to electrical stimulation. Activation of GABAC receptors with CACA suppressed postsynaptic excitability and the GABAC receptor antagonist TPMPA inhibited the effects of CACA. Next, we aimed to display the activation of the GABAC receptors by synaptically released GABA using intracellular recordings. GABA-mediated long-lasting depolarizing responses evoked by high-frequency stimulation were prolonged by TPMPA. For weaker stimulation, the effect of TPMPA was enhanced after GABA uptake was inhibited. Our data demonstrate that GABAC receptors can be activated by endogenous synaptic transmitter release following strong stimulation or under conditions of reduced GABA uptake. The lack of GABAC receptor activation by less intensive stimulation under control conditions suggests that these receptors are extrasynaptic and activated via spillover of synaptically released GABA. Taken together with the restricted expression pattern of GABAC receptors in the brain and their distinctive pharmacological and biophysical properties, our findings supporting extrasynaptic localization of these receptors raise interesting possibilities for novel pharmacological therapies in the treatment of, for example, epilepsy and sleep disorders.
Resumo:
Androgen receptor (AR) is necessary for normal male phenotype development and essential for spermatogenesis. AR is a classical steroid receptor mediating actions of male sex steroids testosterone and 5-alpha-dihydrotestosterone. Numerous coregulators interact with the receptor and regulate AR activity on target genes. This study deals with the characterization of androgen receptor-interacting protein 4 (ARIP4). ARIP4 binds DNA, interacts with AR in vitro and in cultured yeast and mammalian cells, and modulates AR-dependent transactivation. ARIP4 is an active DNA-dependent ATPase, and this enzymatic activity is essential for the ability of ARIP4 to modulate AR function. On the basis of sequence homology in its ATPase domain, ARIP4 belongs to the SNF2 family of proteins involved in chromatin remodeling, DNA repair, and homologous recombination. Similar to its closest homologs ATRX and Rad54, ARIP4 does not seem to be a classical chromatin remodeling protein in that it does not appear to form large protein complexes in vivo or remodel mononucleosomes in vitro. However, ARIP4 is able to generate superhelical torsion on linear DNA fragments. ARIP4 is covalently modified by SUMO-1, and mutation of six potential SUMO attachment sites abolishes the ability of ARIP4 to bind DNA, hydrolyze ATP, and activate AR function. ARIP4 expression starts in early embryonic development. In mouse embryo ARIP4 is present mainly in the neural tube and limb buds. In adult mouse tissues ARIP4 expression is virtually ubiquitous. In mouse testis ARIP4 is expressed in the nuclei of Sertoli cells in a stage-dependent manner. ARIP4 is also present in the nuclei of Leydig cells, spermatogonia, pachytene and diplotene spermatocytes. Testicular expression pattern of ARIP4 does not differ significantly in wild-type, FSHRKO, and LuRKO mice. In the testis of hpg mice, ARIP4 is found mainly in interstitial cells and has very low, if any, expression in Sertoli and germ cells. Heterozygous Arip4+/ mice are fertile and appear normal; however, they are haploinsufficient with regard to androgen action in Sertoli cells. In contrast, Arip4 / embryos are not viable. They have significantly reduced body size at E9.5 and die by E11.5. Compared to wild-type littermates, Arip4 / embryos possess a higher percentage of apoptotic cells at E9.5 and E10.5. Fibroblasts derived from Arip4 / embryos cease growing after 2-3 passages and exhibit a significantly increased apoptosis and decreased proliferation rate than cells from wild-type embryos. Our findings demonstrate that ARIP4 plays an essential role in mouse embryonic development. In addition, testicular expression and AR coregulatory activity of ARIP4 suggest a role of ARIP4-AR interaction in the somatic cells of the testis.
Resumo:
Colorectal cancer is one of the three most common cancers today, for both men and women. Approximately 90% of the cases are sporadic while the remaining 10% is hereditary. Among this 10% is hereditary nonpolyposis colorectal cancer (HNPCC), an autosomal dominant disease, accounting for up to 13% of these cases. HNPCC is associated with germline mutations in four mismatch repair (MMR) genes, MLH1, MSH2, MSH6, and PMS2, and is characterized by a familial accumulation of endometrial, gastric, urological, and ovarian tumors, in addition to colorectal cancer. An important etiological characteristic of HNPCC is the presence of microsatellite instability (MSI), caused by mutations of the MMR genes. Approximately 15% of sporadic cases share the MSI+ trait. Colon cancer is believed to be a consequence of an accumulation of mutations in tumor suppressor genes and oncogenes, eventually resulting in tumor development. This phenomena is accelerated in HNPCC due the presence of an inherited mutation in the MMR genes, accounting for one of the two hits proposed to be needed by Knudson (1971) in order for the manifestation of the MSI phenotype. MMR alterations alone, however, do not occur in the majority of sporadic colon cancers, prompting searches for other mechanisms. One such mechanism found to play a role in colon cancer development was DNA methylation, which is known to play a role in MLH1 inactivation. Our objective was clarification of mechanisms associated with tumor development in both HNPCC and sporadic colorectal cancer in relation to tumorigenic mechanisms. Of particular interest were underlying mechanisms of MSI in sporadic colorectal cancers, with attention to DNA methylation changes and their correlation to MSI. Of additional interest were the genetic and epigenetic events leading to the HNPCC tumor spectrum, chiefly colon and endometrial cancers, in regards to what extent the somatic changes in target tissue explained this phenomenon. We made a number of important findings pertaining to these questions. First, MSI tumor development differs epigenetically from stable tumor development, possibly underlying developmental pathway differences. Additionally, while epigenetic modification, principally DNA methylation, is a major mechanism in sporadic MSI colorectal cancer MLH1 inactivation it does not play a significant role in HNPCC tumors with germline MLH1 mutations. This is possibly an explanation for tumorigenic pathways and clinicopathological characteristic differences between sporadic and hereditary MSI colorectal cancers. Finally, despite indistinguishable genetic predisposition for endometrial and colorectal cancers, instability profiles highlighting organ-specific differences, may be important HNPCC tumor spectrum determinants.
Resumo:
The androgen receptor (AR) mediates the effects of the male sex-steroid hormones (androgens), testosterone and 5?-dihydrotestosterone. Androgens are critical in the development and maintenance of male sexual characteristics. AR is a member of the steroid receptor ligand-inducible transcription factor family. The steroid receptor family is a subgroup of the nuclear receptor superfamily that also includes receptors for the active forms of vitamin A, vitamin D3, and thyroid hormones. Like all nuclear receptors, AR has a conserved modular structure consisting of a non-conserved amino-terminal domain (NTD), containing the intrinsic activation function 1, a highly conserved DNA-binding domain, and a conserved ligand-binding domain (LBD) that harbors the activation function 2. Each of these domains plays an important role in receptor function and signaling, either via intra- and inter-receptor interactions, interactions with specific DNA sequences, termed hormone response elements, or via functional interactions with domain-specific proteins, termed coregulators (coactivators and corepressors). Upon binding androgens, AR acquires a new conformational state, translocates to the nucleus, binds to androgen response elements, homodimerizes and recruits sequence-specific coregulatory factors and the basal transcription machinery. This set of events is required to activate gene transcription (expression). Gene transcription is a strictly modulated process that governs cell growth, cell homeostasis, cell function and cell death. Disruptions of AR transcriptional activity caused by receptor mutations and/or altered coregulator interactions are linked to a wide spectrum of androgen insensitivity syndromes, and to the pathogenesis of prostate cancer (CaP). The treatment of CaP usually involves androgen depletion therapy (ADT). ADT achieves significant clinical responses during the early stages of the disease. However, under the selective pressure of androgen withdrawal, androgen-dependent CaP can progress to an androgen-independent CaP. Androgen-independent CaP is invariably a more aggressive and untreatable form of the disease. Advancing our understanding of the molecular mechanisms behind the switch in androgen-dependency would improve our success of treating CaP and other AR related illnesses. This study evaluates how clinically identified AR mutations affect the receptor s transcriptional activity. We reveal that a potential molecular abnormality in androgen insensitivity syndrome and CaP patients is caused by disruptions of the important intra-receptor NTD/LBD interaction. We demonstrate that the same AR LBD mutations can also disrupt the recruitment of the p160 coactivator protein GRIP1. Our investigations reveal that 30% of patients with advanced, untreated local CaP have somatic mutations that may lead to increases in AR activity. We report that somatic mutations that activate AR may lead to early relapse in ADT. Our results demonstrate that the types of ADT a CaP patient receives may cause a clustering of mutations to a particular region of the receptor. Furthermore, the mutations that arise before and during ADT do not always result in a receptor that is more active, indicating that coregulator interactions play a pivotal role in the progression of androgen-independent CaP. To improve CaP therapy, it is necessary to identify critical coregulators of AR. We screened a HeLa cell cDNA library and identified small carboxyl-terminal domain phosphatase 2 (SCP2). SCP2 is a protein phosphatase that directly interacts with the AR NTD and represses AR activity. We demonstrated that reducing the endogenous cellular levels of SCP2 causes more AR to load on to the prostate specific antigen (PSA) gene promoter and enhancer regions. Additionally, under the same conditions, more RNA polymerase II was recruited to the PSA promoter region and overall there was an increase in androgen-dependent transcription of the PSA gene, revealing that SCP2 could play a role in the pathogenesis of CaP.
Resumo:
Dioxins are ubiquitous environmental poisons having unequivocal adverse health effects on various species. The majority of their effects are thought to be mediated by the aryl hydrocarbon receptor (AhR). Developing human teeth may be sensitive to dioxins and the most toxic dioxin congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is developmentally toxic to rodent teeth. Mechanisms of TCDD toxicity can be studied only experimentally. The aim of the present thesis work was to delineate morphological end points of developmental toxicity of TCDD in rat and mouse teeth and salivary glands in vivo and in vitro and to characterize their cellular and molecular background. Mouse embryonic teeth and submandibular gland explants were grown in organ culture without/with TCDD at various concentrations, examined stereomicroscopically and processed for histological examination. The effects of TCDD on cellular mechanisms essential for organogenesis were investigated. The expression of various genes eliciting the response to TCDD exposure or involved in tooth and salivary gland development was studied at the mRNA and/or protein levels by in situ hybridization and immunohistochemistry. Association of the dental effects of TCDD with the resistance of a rat strain to TCDD acute lethality was analyzed in two lactationally exposed rat strains. The effect of TCDD on rat molar tooth mineralization was studied in tissue sections. TCDD dose- and developmental stage-dependently interfered with tooth formation. TCDD prevented early mouse molar tooth morphogenesis and altered cuspal morphology by enhancing programmend cell death, or apoptosis, in dental epithelial cells programmed to undergo apotosis. Cell proliferation was not affected. TCDD impaired mineralization of rat molar dental matrices, possibly by specifically reducing the expression of the mineralization-related dentin sialophosphoprotein gene shown in cultured mouse teeth. The impaired mineralization of rat teeth was accompanied by decreased expression of AhR and the TCDD-inducible xenobiotic-metabolozing enzyme P4501 A1 (CYP1A1), suggesting mediation of the TCDD effect by the AhR pathway. The severe interference by TCDD with rat incisor formation was independent of the genotypic variation of AhR determining the resistance of a rat strain to TCDD acute lethality. The impairment by TCDD of mouse submandibular gland branching morphogenesis was associated with CYP1A1 induction and involved blockage of EGF receptor signalling. In conclusion, TCDD exposure is likely to have activated the AhR pathway in target organs with the consequent activation of other signalling pathways involving developmentally regulated genes. The resultant phenotype is organ specific and modified by epithelial-mesenchymal interactions and dependent on dose as well as the stage of organogenesis at the time of TCDD exposure. Teeth appear to be responsive to TCDD exposure throughout their development.