929 resultados para Solar radiation pressure


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geoengineering by injection of reflective aerosols into the stratosphere has been proposed as a way to counteract the warming effect of greenhouse gases by reducing the intensity of solar radiation reaching the surface. Here, climate model simulations are used to examine the effect of geoengineering on the tropical overturning circulation. The strength of the circulation is related to the atmospheric static stability and has implications for tropical rainfall. The tropical circulation is projected to weaken under anthropogenic global warming. Geoengineering with stratospheric sulfate aerosol does not mitigate this weakening of the circulation. This response is due to a fast adjustment of the troposphere to radiative heating from the aerosol layer. This effect is not captured when geoengineering is modelled as a reduction in total solar irradiance, suggesting caution is required when interpreting model results from solar dimming experiments as analogues for stratospheric aerosol geoengineering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sensible heat fluxes (QH) are determined using scintillometry and eddy covariance over a suburban area. Two large aperture scintillometers provide spatially integrated fluxes across path lengths of 2.8 km and 5.5 km over Swindon, UK. The shorter scintillometer path spans newly built residential areas and has an approximate source area of 2-4 km2, whilst the long path extends from the rural outskirts to the town centre and has a source area of around 5-10 km2. These large-scale heat fluxes are compared with local-scale eddy covariance measurements. Clear seasonal trends are revealed by the long duration of this dataset and variability in monthly QH is related to the meteorological conditions. At shorter time scales the response of QH to solar radiation often gives rise to close agreement between the measurements, but during times of rapidly changing cloud cover spatial differences in the net radiation (Q*) coincide with greater differences between heat fluxes. For clear days QH lags Q*, thus the ratio of QH to Q* increases throughout the day. In summer the observed energy partitioning is related to the vegetation fraction through use of a footprint model. The results demonstrate the value of scintillometry for integrating surface heterogeneity and offer improved understanding of the influence of anthropogenic materials on surface-atmosphere interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent laboratory measurements show that absorption by the water vapour continuum in near-infrared windows may be about an order of magnitude higher than assumed in many radiation codes. The radiative impact of the continuum at visible and near-infrared wavelengths is examined for the present day and for a possible future warmer climate (with a global-mean total column water increase of 33%). The calculations use a continuum model frequently used in climate models (‘CKD’) and a continuum model where absorption is enhanced at wavelengths greater than 1 µm based on recent measurements (‘CAVIAR’). The continuum predominantly changes the partitioning between solar radiation absorbed by the surface and the atmosphere; changes in top-of-atmosphere net irradiances are smaller. The global-mean clear-sky atmospheric absorption is enhanced by 1.5 W m−2 (about 2%) and 2.8 W m−2 (about 3.5%) for CKD and CAVIAR respectively, relative to a hypothetical no-continuum case, with all-sky enhancements about 80% of these values. The continuum is, in relative terms, more important for radiation budget changes between the present day and a possible future climate. Relative to the no-continuum case, the increase in global-mean clear-sky absorption is 8% higher using CKD and almost 20% higher using CAVIAR; all-sky enhancements are about half these values. The effect of the continuum is estimated for the solar component of the water vapour feedback, the reduction in downward surface irradiance and precipitation change in a warmer world. For CKD and CAVIAR respectively, and relative to the no-continuum case, the solar component of the water vapour feedback is enhanced by about 4 and 9%, the change in clear-sky downward surface irradiance is 7 and 18% more negative, and the global-mean precipitation response decreases by 1 and 4%. There is a continued need for improved continuum measurements, especially at atmospheric temperatures and at wavelengths below 2 µm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The question of climate at high obliquity is raised in the context of both exoplanet studies (e.g. habitability) and paleoclimates studies (evidence for low-latitude glaciation during the Neoproterozoic and the ”Snowball Earth” hypothesis). States of high obliquity, φ, are distinctive in that, for φ ≥54◦, the poles receive more solar radiation in the annual mean than the Equator, opposite to the present day situation. In addition, the seasonal cycle of insolation is extreme, with the poles alternatively “facing” the sun and sheltering in the dark for months. The novelty of our approach is to consider the role of a dynamical ocean in controlling the surface climate at high obliquity, which in turn requires understanding of the surface winds patterns when temperature gradients are reversed. To address these questions, a coupled ocean-atmosphere-sea ice GCM configured on an aquaplanet is employed. Except for the absence of topography and modified obliquity, the set-up is Earth-like. Two large obliquities φ, 54◦ and 90◦, are compared to today’s Earth value, φ=23.5◦. Three key results emerge at high obliquity: 1) despite reversed temper- ature gradients, mid-latitudes surface winds are westerly and trade winds exist at the equator (as for φ=23.5◦) although the westerlies are confined to the summer hemisphere, 2) a habitable planet is possible with mid-latitude temperatures in the range 300-280 K and 3) a stable climate state with an ice cap limited to the equatorial region is unlikely. We clarify the dynamics behind these features (notably by an analysis of the potential vorticity structure and conditions for baroclinic instability of the atmosphere). Interestingly, we find that the absence of a stable partially glaciated state is critically linked to the absence of ocean heat transport during winter, a feature ultimately traced back to the high seasonality of baroclinic instability conditions in the atmosphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Superposed epoch studies have been carried out in order to determine the ionospheric response at mid-latitudes to southward turnings of the interplanetary magnetic field (IMF). This is compared with the geomagnetic response, as seen in the indices K p, AE and Dst. The solar wind, IMF and geomagnetic data used were hourly averages from the years 1967–1989 and thus cover a full 22-year cycle in the solar magnetic field. These data were divided into subsets, determined by the magnitudes of the southward turnings and the concomitant increase in solar wind pressure. The superposed epoch studies were carried out using the time of the southward turning as time zero. The response of the mid-latitude ionosphere is studied by looking at the F-layer critical frequencies, f o F2, from hourly soundings by the Slough ionosonde and their deviation from the monthly median values, δf o F2. For the southward turnings with a change in B z of δB z > 11.5 nT accompanied by a solar wind dynamic pressure P exceeding 5 nPa, the F region critical frequency, f o F2, shows a marked decrease, reaching a minimum value about 20 h after the southward turning. This recovers to pre-event values over the subsequent 24 h, on average. The Dst index shows the classic storm-time decrease to about −60 nT. Four days later, the index has still to fully recover and is at about −25 nT. Both the K p and AE indices show rises before the southward turnings, when the IMF is strongly northward but the solar wind dynamic pressure is enhanced. The average AE index does register a clear isolated pulse (averaging 650 nT for 2 h, compared with a background peak level of near 450 nT at these times) showing enhanced energy deposition at high latitudes in substorms but, like K p, remains somewhat enhanced for several days, even after the average IMF has returned to zero after 1 day. This AE background decays away over several days as the Dst index recovers, indicating that there is some contamination of the currents observed at the AE stations by the continuing enhanced equatorial ring current. For data averaged over all seasons, the critical frequencies are depressed at Slough by 1.3 MHz, which is close to the lower decile of the overall distribution of δf o Fl values. Taking 30-day periods around summer and winter solstice, the largest depression is 1.6 and 1.2 MHz, respectively. This seasonal dependence is confirmed by a similar study for a Southern Hemisphere station, Argentine Island, giving peak depressions of 1.8 MHz and 0.5 MHz for summer and winter. For the subset of turnings where δB z > 11.5 nT and P ≤ 5 nPa, the response of the geomagnetic indices is similar but smaller, while the change in δf o F2 has all but disappeared. This confirms that the energy deposited at high latitudes, which leads to the geomagnetic and ionospheric disturbances following a southward turning of the IMF, increases with the energy density (dynamic pressure) of the solar wind flow. The magnitude of all responses are shown to depend on δB z . At Slough, the peak depression always occurs when Slough rotates into the noon sector. The largest ionospheric response is for southward turnings seen between 15–21 UT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The impact on the dynamics of the stratosphere of three approaches to geoengineering by solar radiation management is investigated using idealized simulations of a global climate model. The approaches are geoengineering with sulfate aerosols, titania aerosols, and reduction in total solar irradiance (representing mirrors placed in space). If it were possible to use stratospheric aerosols to counterbalance the surface warming produced by a quadrupling of atmospheric carbon dioxide concentrations, tropical lower stratospheric radiative heating would drive a thermal wind response which would intensify the stratospheric polar vortices. In the Northern Hemisphere this intensification results in strong dynamical cooling of the polar stratosphere. Northern Hemisphere stratospheric sudden warming events become rare (one and two in 65 years for sulfate and titania, respectively). The intensification of the polar vortices results in a poleward shift of the tropospheric midlatitude jets in winter. The aerosol radiative heating enhances the tropical upwelling in the lower stratosphere, influencing the strength of the Brewer-Dobson circulation. In contrast, solar dimming does not produce heating of the tropical lower stratosphere, and so there is little intensification of the polar vortex and no enhanced tropical upwelling. The dynamical response to titania aerosol is qualitatively similar to the response to sulfate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Observational analyses of running 5-year ocean heat content trends (Ht) and net downward top of atmosphere radiation (N) are significantly correlated (r~0.6) from 1960 to 1999, but a spike in Ht in the early 2000s is likely spurious since it is inconsistent with estimates of N from both satellite observations and climate model simulations. Variations in N between 1960 and 2000 were dominated by volcanic eruptions, and are well simulated by the ensemble mean of coupled models from the Fifth Coupled Model Intercomparison Project (CMIP5). We find an observation-based reduction in N of -0.31±0.21 Wm-2 between 1999 and 2005 that potentially contributed to the recent warming slowdown, but the relative roles of external forcing and internal variability remain unclear. While present-day anomalies of N in the CMIP5 ensemble mean and observations agree, this may be due to a cancellation of errors in outgoing longwave and absorbed solar radiation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Land surface albedo, a key parameter to derive Earth's surface energy balance, is used in the parameterization of numerical weather prediction, climate monitoring and climate change impact assessments. Changes in albedo due to fire have not been fully investigated on a continental and global scale. The main goal of this study, therefore, is to quantify the changes in instantaneous shortwave albedo produced by biomass burning activities and their associated radiative forcing. The study relies on the MODerate-resolution Imaging Spectroradiometer (MODIS) MCD64A1 burned-area product to create an annual composite of areas affected by fire and the MCD43C2 bidirectional reflectance distribution function (BRDF) albedo snow-free product to compute a bihemispherical reflectance time series. The approximate day of burning is used to calculate the instantaneous change in shortwave albedo. Using the corresponding National Centers for Environmental Prediction (NCEP) monthly mean downward solar radiation flux at the surface, the global radiative forcing associated with fire was computed. The analysis reveals a mean decrease in shortwave albedo of −0.014 (1σ = 0.017), causing a mean positive radiative forcing of 3.99 Wm−2 (1σ = 4.89) over the 2002–20012 time period in areas affected by fire. The greatest drop in mean shortwave albedo change occurs in 2002, which corresponds to the highest total area burned (378 Mha) observed in the same year and produces the highest mean radiative forcing (4.5 Wm−2). Africa is the main contributor in terms of burned area, but forests globally give the highest radiative forcing per unit area and thus give detectable changes in shortwave albedo. The global mean radiative forcing for the whole period studied (~0.0275 Wm−2) shows that the contribution of fires to the Earth system is not insignificant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Highly heterogeneous mountain snow distributions strongly affect soil moisture patterns; local ecology; and, ultimately, the timing, magnitude, and chemistry of stream runoff. Capturing these vital heterogeneities in a physically based distributed snow model requires appropriately scaled model structures. This work looks at how model scale—particularly the resolutions at which the forcing processes are represented—affects simulated snow distributions and melt. The research area is in the Reynolds Creek Experimental Watershed in southwestern Idaho. In this region, where there is a negative correlation between snow accumulation and melt rates, overall scale degradation pushed simulated melt to earlier in the season. The processes mainly responsible for snow distribution heterogeneity in this region—wind speed, wind-affected snow accumulations, thermal radiation, and solar radiation—were also independently rescaled to test process-specific spatiotemporal sensitivities. It was found that in order to accurately simulate snowmelt in this catchment, the snow cover needed to be resolved to 100 m. Wind and wind-affected precipitation—the primary influence on snow distribution—required similar resolution. Thermal radiation scaled with the vegetation structure (~100 m), while solar radiation was adequately modeled with 100–250-m resolution. Spatiotemporal sensitivities to model scale were found that allowed for further reductions in computational costs through the winter months with limited losses in accuracy. It was also shown that these modeling-based scale breaks could be associated with physiographic and vegetation structures to aid a priori modeling decisions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Climate change is amplified in the Arctic region. Arctic amplification has been found in past warm1 and glacial2 periods, as well as in historical observations3, 4 and climate model experiments5, 6. Feedback effects associated with temperature, water vapour and clouds have been suggested to contribute to amplified warming in the Arctic, but the surface albedo feedback—the increase in surface absorption of solar radiation when snow and ice retreat—is often cited as the main contributor7, 8, 9, 10. However, Arctic amplification is also found in models without changes in snow and ice cover11, 12. Here we analyse climate model simulations from the Coupled Model Intercomparison Project Phase 5 archive to quantify the contributions of the various feedbacks. We find that in the simulations, the largest contribution to Arctic amplification comes from a temperature feedbacks: as the surface warms, more energy is radiated back to space in low latitudes, compared with the Arctic. This effect can be attributed to both the different vertical structure of the warming in high and low latitudes, and a smaller increase in emitted blackbody radiation per unit warming at colder temperatures. We find that the surface albedo feedback is the second main contributor to Arctic amplification and that other contributions are substantially smaller or even opposeArctic amplification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fossil pollen, ancient lake sediments and archaeological evidence from Africa indicate that the Sahel and Sahara regions were considerably wetter than today during the early to middle Holocene period, about 12,000 to 5,000 years ago1–4. Vegetation associated with the modern Sahara/Sahel boundary was about 5° farther north, and there were more and larger lakes between 15 and 30° N. Simulations with climate models have shown that these wetter conditions were probably caused by changes in Earth's orbital parameters that increased the amplitude of the seasonal cycle of solar radiation in the Northern Hemisphere, enhanced the land-ocean temperature contrast, and thereby strengthened the African summer monsoon5–7. However, these simulations underestimated the consequent monsoon enhancement as inferred from palaeorecords4. Here we use a climate model to show that changes in vegetation and soil may have increased the climate response to orbital forcing. We find that replacing today's orbital forcing with that of the mid-Holocene increases summer precipitation by 12% between 15 and 22° N. Replacing desert with grassland, and desert soil with more loamy soil, further enhances the summer precipitation (by 6 and 10% respectively), giving a total precipitation increase of 28%. When the simulated climate changes are applied to a biome model, vegetation becomes established north of the current Sahara/Sahel boundary, thereby shrinking the area of the Sahara by 11% owing to orbital forcing alone, and by 20% owing to the combined influence of orbital forcing and the prescribed vegetation and soil changes. The inclusion of the vegetation and soil feedbacks thus brings the model simulations and palaeovegetation observations into closer agreement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nutrient enrichment and drought conditions are major threats to lowland rivers causing ecosystem degradation and composition changes in plant communities. The controls on primary producer composition in chalk rivers are investigated using a new model and existing data from the River Frome (UK) to explore abiotic and biotic interactions. The growth and interaction of four primary producer functional groups (suspended algae, macrophytes, epiphytes, sediment biofilm) were successfully linked with flow, nutrients (N, P), light and water temperature such that the modelled biomass dynamics of the four groups matched that of the observed. Simulated growth of suspended algae was limited mainly by the residence time of the river rather than in-stream phosphorus concentrations. The simulated growth of the fixed vegetation (macrophytes, epiphytes, sediment biofilm) was overwhelmingly controlled by incoming solar radiation and light attenuation in the water column. Nutrients and grazing have little control when compared to the other physical controls in the simulations. A number of environmental threshold values were identified in the model simulations for the different producer types. The simulation results highlighted the importance of the pelagic–benthic interactions within the River Frome and indicated that process interaction defined the behaviour of the primary producers, rather than a single, dominant driver. The model simulations pose interesting questions to be considered in the next iteration of field- and laboratory based studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Within-field variation in sugar beet yield and quality was investigated in three commercial sugar beet fields in the east of England to identify the main associated variables and to examine the possibility of predicting yield early in the season with a view to spatially variable management of sugar beet crops. Irregular grid sampling with some purposively-located nested samples was applied. It revealed the spatial variability in each sugar beet field efficiently. In geostatistical analyses, most variograms were isotropic with moderate to strong spatial dependency indicating a significant spatial variation in sugar beet yield and associated growth and environmental variables in all directions within each field. The Kriged maps showed spatial patterns of yield variability within each field and visual association with the maps of other variables. This was confirmed by redundancy analyses and Pearson correlation coefficients. The main variables associated with yield variability were soil type, organic matter, soil moisture, weed density and canopy temperature. Kriged maps of final yield variability were strongly related to that in crop canopy cover, LAI and intercepted solar radiation early in the growing season, and the yield maps of previous crops. Therefore, yield maps of previous crops together with early assessment of sugar beet growth may make an early prediction of within-field variability in sugar beet yield possible. The Broom’s Barn sugar beet model failed to account for the spatial variability in sugar yield, but the simulation was greatly improved when corrected for early canopy development cover and when the simulated yield was adjusted for weeds and plant population. Further research to optimize inputs to maximise sugar yield should target the irrigation and fertilizing of areas within fields with low canopy cover early in the season.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A study has been carried out to assess the importance of radiosonde corrections in improving the agreement between satellite and radiosonde measurements of upper-tropospheric humidity. Infrared [High Resolution Infrared Radiation Sounder (HIRS)-12] and microwave [Advanced Microwave Sounding Unit (AMSU)-18] measurements from the NOAA-17 satellite were used for this purpose. The agreement was assessed by comparing the satellite measurements against simulated measurements using collocated radiosonde profiles of the Atmospheric Radiation Measurement (ARM) Program undertaken at tropical and midlatitude sites. The Atmospheric Radiative Transfer Simulator (ARTS) was used to simulate the satellite radiances. The comparisons have been done under clear-sky conditions, separately for daytime and nighttime soundings. Only Vaisala RS92 radiosonde sensors were used and an empirical correction (EC) was applied to the radiosonde measurements. The EC includes correction for mean calibration bias and for solar radiation error, and it removes radiosonde bias relative to three instruments of known accuracy. For the nighttime dataset, the EC significantly reduces the bias from 0.63 to 20.10 K in AMSU-18 and from 1.26 to 0.35 K in HIRS-12. The EC has an even greater impact on the daytime dataset with a bias reduction from 2.38 to 0.28 K in AMSU-18 and from 2.51 to 0.59 K in HIRS-12. The present study promises a more accurate approach in future radiosonde-based studies in the upper troposphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lake surface water temperatures (LSWTs) of 246 globally distributed large lakes were derived from Along-Track Scanning Radiometers (ATSR) for the period 1991–2011. The climatological cycles of mean LSWT derived from these data quantify on a global scale the responses of large lakes' surface temperatures to the annual cycle of forcing by solar radiation and the ambient meteorological conditions. LSWT cycles reflect the twice annual peak in net solar radiation for lakes between 1°S to 12°N. For lakes without a lake-mean seasonal ice cover, LSWT extremes exceed air temperatures by 0.5–1.7 °C for maximum and 0.7–1.9 °C for minimum temperature. The summer maximum LSWTs of lakes from 25°S to 35°N show a linear decrease with increasing altitude; −3.76 ± 0.17 °C km−1 (inline image = 0.95), marginally lower than the corresponding air temperature decrease with altitude −4.15 ± 0.24 °C km−1 (inline image = 0.95). Lake altitude of tropical lakes account for 0.78–0.83 (inline image) of the variation in the March to June LSWT–air temperature differences, with differences decreasing by 1.9 °C as the altitude increases from 500 to 1800 m above sea level (a.s.l.) We define an ‘open water phase’ as the length of time the lake-mean LSWT remains above 4 °C. There is a strong global correlation between the start and end of the lake-mean open water phase and the spring and fall 0 °C air temperature transition days, (inline image = 0.74 and 0.80, respectively), allowing for a good estimation of timing and length of the open water phase of lakes without LSWT observations. Lake depth, lake altitude and distance from coast further explain some of the inter-lake variation in the start and end of the open water phase.