Stratospheric dynamics and midlatitude jets under geoengineering with space mirrors and sulfate and titania aerosols


Autoria(s): Ferraro, A. J.; Charlton-Perez, Andrew; Highwood, Ellie
Data(s)

20/01/2015

Resumo

The impact on the dynamics of the stratosphere of three approaches to geoengineering by solar radiation management is investigated using idealized simulations of a global climate model. The approaches are geoengineering with sulfate aerosols, titania aerosols, and reduction in total solar irradiance (representing mirrors placed in space). If it were possible to use stratospheric aerosols to counterbalance the surface warming produced by a quadrupling of atmospheric carbon dioxide concentrations, tropical lower stratospheric radiative heating would drive a thermal wind response which would intensify the stratospheric polar vortices. In the Northern Hemisphere this intensification results in strong dynamical cooling of the polar stratosphere. Northern Hemisphere stratospheric sudden warming events become rare (one and two in 65 years for sulfate and titania, respectively). The intensification of the polar vortices results in a poleward shift of the tropospheric midlatitude jets in winter. The aerosol radiative heating enhances the tropical upwelling in the lower stratosphere, influencing the strength of the Brewer-Dobson circulation. In contrast, solar dimming does not produce heating of the tropical lower stratosphere, and so there is little intensification of the polar vortex and no enhanced tropical upwelling. The dynamical response to titania aerosol is qualitatively similar to the response to sulfate.

Formato

text

Identificador

http://centaur.reading.ac.uk/39102/1/jgrd51930.pdf

Ferraro, A. J., Charlton-Perez, A. <http://centaur.reading.ac.uk/view/creators/90000511.html> and Highwood, E. <http://centaur.reading.ac.uk/view/creators/90000039.html> (2015) Stratospheric dynamics and midlatitude jets under geoengineering with space mirrors and sulfate and titania aerosols. Journal of Geophysical Research: Atmospheres, 120 (2). pp. 414-429. ISSN 2169-8996 doi: 10.1002/2014JD022734 <http://dx.doi.org/10.1002/2014JD022734>

Idioma(s)

en

Publicador

American Geophysical Union

Relação

http://centaur.reading.ac.uk/39102/

creatorInternal Charlton-Perez, Andrew

creatorInternal Highwood, Ellie

http://dx.doi.org/10.1002/2014JD022734

10.1002/2014JD022734

Direitos

cc_by

Tipo

Article

PeerReviewed