944 resultados para Software-based techniques


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to optimize frontal detection in sea surface temperature fields at 4 km resolution, a combined statistical and expert-based approach is applied to test different spatial smoothing of the data prior to the detection process. Fronts are usually detected at 1 km resolution using the histogram-based, single image edge detection (SIED) algorithm developed by Cayula and Cornillon in 1992, with a standard preliminary smoothing using a median filter and a 3 × 3 pixel kernel. Here, detections are performed in three study regions (off Morocco, the Mozambique Channel, and north-western Australia) and across the Indian Ocean basin using the combination of multiple windows (CMW) method developed by Nieto, Demarcq and McClatchie in 2012 which improves on the original Cayula and Cornillon algorithm. Detections at 4 km and 1 km of resolution are compared. Fronts are divided in two intensity classes (“weak” and “strong”) according to their thermal gradient. A preliminary smoothing is applied prior to the detection using different convolutions: three type of filters (median, average and Gaussian) combined with four kernel sizes (3 × 3, 5 × 5, 7 × 7, and 9 × 9 pixels) and three detection window sizes (16 × 16, 24 × 24 and 32 × 32 pixels) to test the effect of these smoothing combinations on reducing the background noise of the data and therefore on improving the frontal detection. The performance of the combinations on 4 km data are evaluated using two criteria: detection efficiency and front length. We find that the optimal combination of preliminary smoothing parameters in enhancing detection efficiency and preserving front length includes a median filter, a 16 × 16 pixel window size, and a 5 × 5 pixel kernel for strong fronts and a 7 × 7 pixel kernel for weak fronts. Results show an improvement in detection performance (from largest to smallest window size) of 71% for strong fronts and 120% for weak fronts. Despite the small window used (16 × 16 pixels), the length of the fronts has been preserved relative to that found with 1 km data. This optimal preliminary smoothing and the CMW detection algorithm on 4 km sea surface temperature data are then used to describe the spatial distribution of the monthly frequencies of occurrence for both strong and weak fronts across the Indian Ocean basin. In general strong fronts are observed in coastal areas whereas weak fronts, with some seasonal exceptions, are mainly located in the open ocean. This study shows that adequate noise reduction done by a preliminary smoothing of the data considerably improves the frontal detection efficiency as well as the global quality of the results. Consequently, the use of 4 km data enables frontal detections similar to 1 km data (using a standard median 3 × 3 convolution) in terms of detectability, length and location. This method, using 4 km data is easily applicable to large regions or at the global scale with far less constraints of data manipulation and processing time relative to 1 km data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Software engineering best practices allow significantly improving the software development. However, the implementation of best practices requires skilled professionals, financial investment and technical support to facilitate implementation and achieve the respective improvement. In this paper we proposes a protocol to design techniques to implement best practices of software engineering. The protocol includes the identification and selection of process to improve, the study of standards and models, identification of best practices associated with the process and the possible implementation techniques. In addition, technical design activities are defined in order to create or adapt the techniques of implementing best practices for software development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Relatório de Estágio apresentado à Escola Superior de Educação do Instituto Politécnico de Castelo Branco para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Educação Pré-escolar e Ensino do 1.º Ciclo do Ensino Básico.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As an emerging innovation paradigm gaining momentum in recent years, the open innovation paradigm is calling for greater theoretical depth and more empirical research. This dissertation proposes that open innovation in the context of open source software sponsorship may be viewed as knowledge strategies of the firm. Hence, this dissertation examines the performance determinants of open innovation through the lens of knowledge-based perspectives. Using event study and regression methodologies, this dissertation found that these open source software sponsorship events can indeed boost the stock market performance of US public firms. In addition, both the knowledge capabilities of the firms and the knowledge profiles of the open source projects they sponsor matter for performance. In terms of firm knowledge capabilities, internet service firms perform better than other firms owing to their advantageous complementary capabilities. Also, strong knowledge exploitation capabilities of the firm are positively associated with performance. In terms of the knowledge profile of sponsored projects, platform projects perform better than component projects. Also, community-originated projects outperform firm-originated projects. Finally, based on these findings, this dissertation discussed the important theoretical implications for the strategic tradeoff between knowledge protection and sharing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Computational intelligent support for decision making is becoming increasingly popular and essential among medical professionals. Also, with the modern medical devices being capable to communicate with ICT, created models can easily find practical translation into software. Machine learning solutions for medicine range from the robust but opaque paradigms of support vector machines and neural networks to the also performant, yet more comprehensible, decision trees and rule-based models. So how can such different techniques be combined such that the professional obtains the whole spectrum of their particular advantages? The presented approaches have been conceived for various medical problems, while permanently bearing in mind the balance between good accuracy and understandable interpretation of the decision in order to truly establish a trustworthy ‘artificial’ second opinion for the medical expert.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, 2015.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For a long time, electronic data analysis has been associated with quantitative methods. However, Computer Assisted Qualitative Data Analysis Software (CAQDAS) are increasingly being developed. Although the CAQDAS has been there for decades, very few qualitative health researchers report using it. This may be due to the difficulties that one has to go through to master the software and the misconceptions that are associated with using CAQDAS. While the issue of mastering CAQDAS has received ample attention, little has been done to address the misconceptions associated with CAQDAS. In this paper, the author reflects on his experience of interacting with one of the popular CAQDAS (NVivo) in order to provide evidence-based implications of using the software. The key message is that unlike statistical software, the main function of CAQDAS is not to analyse data but rather to aid the analysis process, which the researcher must always remain in control of. In other words, researchers must equally know that no software can analyse qualitative data. CAQDAS are basically data management packages, which support the researcher during analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Part 5: Service Orientation in Collaborative Networks

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Today, modern System-on-a-Chip (SoC) systems have grown rapidly due to the increased processing power, while maintaining the size of the hardware circuit. The number of transistors on a chip continues to increase, but current SoC designs may not be able to exploit the potential performance, especially with energy consumption and chip area becoming two major concerns. Traditional SoC designs usually separate software and hardware. Thus, the process of improving the system performance is a complicated task for both software and hardware designers. The aim of this research is to develop hardware acceleration workflow for software applications. Thus, system performance can be improved with constraints of energy consumption and on-chip resource costs. The characteristics of software applications can be identified by using profiling tools. Hardware acceleration can have significant performance improvement for highly mathematical calculations or repeated functions. The performance of SoC systems can then be improved, if the hardware acceleration method is used to accelerate the element that incurs performance overheads. The concepts mentioned in this study can be easily applied to a variety of sophisticated software applications. The contributions of SoC-based hardware acceleration in the hardware-software co-design platform include the following: (1) Software profiling methods are applied to H.264 Coder-Decoder (CODEC) core. The hotspot function of aimed application is identified by using critical attributes such as cycles per loop, loop rounds, etc. (2) Hardware acceleration method based on Field-Programmable Gate Array (FPGA) is used to resolve system bottlenecks and improve system performance. The identified hotspot function is then converted to a hardware accelerator and mapped onto the hardware platform. Two types of hardware acceleration methods – central bus design and co-processor design, are implemented for comparison in the proposed architecture. (3) System specifications, such as performance, energy consumption, and resource costs, are measured and analyzed. The trade-off of these three factors is compared and balanced. Different hardware accelerators are implemented and evaluated based on system requirements. 4) The system verification platform is designed based on Integrated Circuit (IC) workflow. Hardware optimization techniques are used for higher performance and less resource costs. Experimental results show that the proposed hardware acceleration workflow for software applications is an efficient technique. The system can reach 2.8X performance improvements and save 31.84% energy consumption by applying the Bus-IP design. The Co-processor design can have 7.9X performance and save 75.85% energy consumption.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system’s EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter’s components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Deep learning methods are extremely promising machine learning tools to analyze neuroimaging data. However, their potential use in clinical settings is limited because of the existing challenges of applying these methods to neuroimaging data. In this study, first a data leakage type caused by slice-level data split that is introduced during training and validation of a 2D CNN is surveyed and a quantitative assessment of the model’s performance overestimation is presented. Second, an interpretable, leakage-fee deep learning software written in a python language with a wide range of options has been developed to conduct both classification and regression analysis. The software was applied to the study of mild cognitive impairment (MCI) in patients with small vessel disease (SVD) using multi-parametric MRI data where the cognitive performance of 58 patients measured by five neuropsychological tests is predicted using a multi-input CNN model taking brain image and demographic data. Each of the cognitive test scores was predicted using different MRI-derived features. As MCI due to SVD has been hypothesized to be the effect of white matter damage, DTI-derived features MD and FA produced the best prediction outcome of the TMT-A score which is consistent with the existing literature. In a second study, an interpretable deep learning system aimed at 1) classifying Alzheimer disease and healthy subjects 2) examining the neural correlates of the disease that causes a cognitive decline in AD patients using CNN visualization tools and 3) highlighting the potential of interpretability techniques to capture a biased deep learning model is developed. Structural magnetic resonance imaging (MRI) data of 200 subjects was used by the proposed CNN model which was trained using a transfer learning-based approach producing a balanced accuracy of 71.6%. Brain regions in the frontal and parietal lobe showing the cerebral cortex atrophy were highlighted by the visualization tools.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The industrial context is changing rapidly due to advancements in technology fueled by the Internet and Information Technology. The fourth industrial revolution counts integration, flexibility, and optimization as its fundamental pillars, and, in this context, Human-Robot Collaboration has become a crucial factor for manufacturing sustainability in Europe. Collaborative robots are appealing to many companies due to their low installation and running costs and high degree of flexibility, making them ideal for reshoring production facilities with a short return on investment. The ROSSINI European project aims to implement a true Human-Robot Collaboration by designing, developing, and demonstrating a modular and scalable platform for integrating human-centred robotic technologies in industrial production environments. The project focuses on safety concerns related to introducing a cobot in a shared working area and aims to lay the groundwork for a new working paradigm at the industrial level. The need for a software architecture suitable to the robotic platform employed in one of three use cases selected to deploy and test the new technology was the main trigger of this Thesis. The chosen application consists of the automatic loading and unloading of raw-material reels to an automatic packaging machine through an Autonomous Mobile Robot composed of an Autonomous Guided Vehicle, two collaborative manipulators, and an eye-on-hand vision system for performing tasks in a partially unstructured environment. The results obtained during the ROSSINI use case development were later used in the SENECA project, which addresses the need for robot-driven automatic cleaning of pharmaceutical bins in a very specific industrial context. The inherent versatility of mobile collaborative robots is evident from their deployment in the two projects with few hardware and software adjustments. The positive impact of Human-Robot Collaboration on diverse production lines is a motivation for future investments in research on this increasingly popular field by the industry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Structural Health Monitoring (SHM) research area is increasingly investigated due to its high potential in reducing the maintenance costs and in ensuring the systems safety in several industrial application fields. A growing demand of new SHM systems, permanently embedded into the structures, for savings in weight and cabling, comes from the aeronautical and aerospace application fields. As consequence, the embedded electronic devices are to be wirelessly connected and battery powered. As result, a low power consumption is requested. At the same time, high performance in defects or impacts detection and localization are to be ensured to assess the structural integrity. To achieve these goals, the design paradigms can be changed together with the associate signal processing. The present thesis proposes design strategies and unconventional solutions, suitable both for real-time monitoring and periodic inspections, relying on piezo-transducers and Ultrasonic Guided Waves. In the first context, arrays of closely located sensors were designed, according to appropriate optimality criteria, by exploiting sensors re-shaping and optimal positioning, to achieve improved damages/impacts localisation performance in noisy environments. An additional sensor re-shaping procedure was developed to tackle another well-known issue which arises in realistic scenario, namely the reverberation. A novel sensor, able to filter undesired mechanical boundaries reflections, was validated via simulations based on the Green's functions formalism and FEM. In the active SHM context, a novel design methodology was used to develop a single transducer, called Spectrum-Scanning Acoustic Transducer, to actively inspect a structure. It can estimate the number of defects and their distances with an accuracy of 2[cm]. It can also estimate the damage angular coordinate with an equivalent mainlobe aperture of 8[deg], when a 24[cm] radial gap between two defects is ensured. A suitable signal processing was developed in order to limit the computational cost, allowing its use with embedded electronic devices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the field of Power Electronics, several types of motor control systems have been developed using STM microcontroller and power boards. In both industrial power applications and domestic appliances, power electronic inverters are widely used. Inverters are used to control the torque, speed, and position of the rotor in AC motor drives. An inverter delivers constant-voltage and constant-frequency power in uninterruptible power sources. Because inverter power supplies have a high-power consumption and low transfer efficiency rate, a three-phase sine wave AC power supply was created using the embedded system STM32, which has low power consumption and efficient speed. It has the capacity of output frequency of 50 Hz and the RMS of line voltage. STM32 embedded based Inverter is a power supply that integrates, reduced, and optimized the power electronics application that require hardware system, software, and application solution, including power architecture, techniques, and tools, approaches capable of performance on devices and equipment. Power inverters are currently used and implemented in green energy power system with low energy system such as sensors or microcontroller to perform the operating function of motors and pumps. STM based power inverter is efficient, less cost and reliable. My thesis work was based on STM motor drives and control system which can be implemented in a gas analyser for operating the pumps and motors. It has been widely applied in various engineering sectors due to its ability to respond to adverse structural changes and improved structural reliability. The present research was designed to use STM Inverter board on low power MCU such as NUCLEO with some practical examples such as Blinking LED, and PWM. Then we have implemented a three phase Inverter model with Steval-IPM08B board, which converter single phase 230V AC input to three phase 380 V AC output, the output will be useful for operating the induction motor.