956 resultados para Simulated annealing (Matemática)
Resumo:
We have studied the effect of rapid thermal annealing (RTA) on GaInNAs/GaAs quantum wells (QWs) grown by molecular-beam epitaxy using a dc plasma as the N source. It was found that RTA at low temperature (LT, 650 degrees C) and high temperature (HT, 900 degrees C) could both improve the QW quality significantly. To clarify the mechanism of quality improvement by RTA, a magnetic field perpendicular to the path of the N plasma flux was applied during the growth of the GaInNAs layers for the sake of comparison. It was found that LT-RTA mainly removed dislocations at interfaces related to the ion bombardment, whereas, HT-RTA further removed dislocations originating from the growth. LT-RTA caused only a slight blueshift of photoluminescence peak wavelength, probably due to defect-assisted interdiffusion of In-Ga at the QW interfaces. The blueshift caused by HT-RTA, on the other hand, was much larger. It is suggested that this is due to the fast defect-assisted diffusion of N-As at the QW interfaces. As defects are removed by annealing, the diffusion of In-Ga at interfaces would be predominant. (C) 2000 American Institute of Physics. [S0003- 6951(00)01535-7].
Resumo:
An improved pulsed rapid thermal annealing (PRTA) has been used for the solid-phase crystallization (SPC) of a-Si films prepared by PECVD. The SPC can be completed with time-temperature budgets such as 10 cycles of 60-s 550 degrees C thermal bias/1-s 850 degrees C thermal pulse. The microstructure and surface morphology of the crystallized films are investigated by X-ray diffraction (XRD). The results indicate that this PRTA is a suitable post-crystallization technique for fabricating large-area poly-Si films on low-cost substrate. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We have studied the effect of rapid thermal annealing (RTA) on highly strained InGaAs/GaAs quantum wells by using photoluminescence (PL) and double-crystal X-ray diffraction (DCXRD) measurements. It is found that a distinct additional PL emission peak can be observed for the annealed samples. This PL emission possesses features similar to the PL emission from InGaAs/GaAs quantum dots (QDs) with the same indium content. It is proposed that this emission stems from QDs, which were formed during the annealing process. This formation is attributed to the favorable diffusion due to the inhomogeneous strain distribution in the InGaAs layer intersurface. The DCXRD measurements also confirm that the dominant relaxation is strain enhanced diffusion under the low annealing temperatures. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Postgrowth rapid thermal annealing was performed on InGaAs/GaAs quantum dots grown by molecular beam epitaxy. The blue shift of the emission peak and the narrowing of the luminescence line width are observed at lower annealing temperature. However, when the annealing temperature is increased to 850 degrees C, the emission line width becomes larger. The TEM image of this sample shows that the surface becomes rough, and some large clusters are formed, which is due to the interdiffusion of In, Ga atoms at the InGaAs/GaAs interface and to the strain relaxation. The material is found to degrade dramatically when the annealing temperature is further increased to 900 degrees C, while emission from quantum dots can still be detected, along with the appearance of the emission from excited state. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Deep trap levels in a Mg-doped GaN grown by metalorganic vapor phase epitaxy are studied with deep level transient spectroscopy (DLTS). The Mg concentration of the sample was 4.8 x 10(19) cm(-3), but the hole concentration was as low as 1.3x10(17) cm-3 at room temperature. The DLTS spectrum has a dominant peak D-1 with an activation energy of 0.41+/-0.05 eV, accompanied by two additional peaks with activation energies of 0.49+/-0.09 eV (D-2) and 0.59+/-0.05 eV (D-3). It was found that the dominant peak D-1 consists of five peaks, each of which has different activation energy and capture cross section. In order to investigate these deep levels further, we performed heat treatment on the same samples to observe the variations of activation energy, capture cross section, and amplitude of DLTS signals. It was found that the longer the heat treatment duration is, the lower the amplitude of DLTS peaks become. This suggests that the decrease of the DLTS signal originates from hydrogen atom outgoing from the film during the annealing process. The possible originality of multiple trap levels was discussed in terms of the Mg-N-H complex. (C) 2000 American Vacuum Society. [S0734-2101(00)01701-2].
Resumo:
A KrF (248 nm) excimer laser with a 38 ns pulse width was used to study pulsed laser annealing (PLA) on Mg-doped cubic GaN alms. The laser-induced changes were monitored by photoluminescence (PL) measurement. It indicated that deep levels in as-grown cubic GaN : Mg films were neutralized by H and PLA treatment could break Mg-H-N complex. The evolution of emissions around 426 and 468 nm with different PLA conditions reflected the different activation of the involved deep levels. Rapid thermal annealing (RTA) in N-2 atmosphere reverts the luminescence of laser annealed samples to that of the pre-annealing state. The reason is that most H atoms still remained in the epilayers after PLA due to the short duration of the pulses and reoccupied the original locations during RTA. (C) 2000 Elsevier Science B.V. All rights reserved. PACS: 61.72.Vv; 61.72.Cc; 18.55. -m.
Resumo:
Postgrowth rapid thermal annealing was used to study the relaxation mechanism and optical properties of InGaAs/GaAs self-assembled quantum dots superlattice grown by molecular beam epitaxy. It is found that a significant narrowing of the luminescence linewidth (from 80 to 42 meV) occurs together with about 86 meV blue shift at annealing temperature up to 950 degrees C. Double crystal X-ray diffraction measurements show that the intensity of the satellite diffraction peak, which corresponds to the quantum dots superlattice, decreased with the increasing annealing temperature and disappeared at 750 degrees C, but recovered and increased again at higher annealing temperatures. This behavior can be explained by two competing relaxation mechanisms; interdiffusion and favored migration. The study indicates that a suitable annealing treatment can improve the structural properties of the quantum dots superlattice. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The effect of rapid thermal annealing (RTA) on the optical properties of GaNxAs1-x/GaAs strained single quantum well (SQW) was studied by low-temperature photoluminescence (PL). The GaNxAs1-x/GaAs SQW structures were prepared by dc active nitrogen plasma assisted molecular beam epitaxy. PL measurements on a series of samples with different well widths and nitrogen compositions were used to evaluate the effects of RTA. The annealing temperature and time were varied from 650 to 850 degrees C and 30 s to 15 min, respectively. Remarkable improvements of the optical properties of the samples were observed after RTA under optimum conditions. The interdiffusion constants have been calculated by taking into account error function diffusion and solving the Schrodinger equation. The estimated interdiffusion constants D are 10(-17)-10(-16) cm(2)/s for the earlier annealing conditions. Activation energies of 6-7 eV are obtained by fitting the temperature dependence of the interdiffusion constants. (C) 2000 American Institute of Physics. [S0021-8979(00)10401-3].
Resumo:
The formation of arsenic clusters in a system of vertically aligned InAs quantum islands on GaAs during thermal annealing under As overpressure has been investigated by transmission electron microscopy (TEM) and Raman scattering. Semicoherent arsenic clusters, identified by TEM examination, have been formed on the surface of the GaAs capping layer. The existence of arsenic precipitates is also confirmed by Raman spectra, showing new peaks from the annealed specimen at 256 and 199 cm(-1). These peaks have been ascribed to A(1g) and E-g Raman active phonons of crystalline arsenic. The phenomenon can be understood by a model of strain-induced selected growth under As overpressure. (C) 1999 American Institute of Physics. [S0003-6951(99)02045-8].
Resumo:
The annealing behavior of the hexagonal phase content in cubic GaN (c-GaN) thin films grown on GaAs (001) by MOCVD is reported. C-GaN thin films are grown on GaAs (001) substrates by metalorganic chemical vapor deposition (MOCVD). High temperature annealing is employed to treat the as-grown c-GaN thin films. The characterization of the c-GaN films is investigated by photoluminescence (PL) and Raman scattering spectroscopy. The change conditions of the hexagonal phase content in the metastable c-GaN are reported. There is a boundary layer existing in the c-GaN/GaAs film. When being annealed at high temperature, the intensity of the TOB and LOB phonon modes from the boundary layer weakens while that of the E-2 phonon mode from the hexagonal phase increases. The content change of hexagonal phase has closer relationship with annealing temperature than with annealing time period.
Resumo:
The interface diffusion, reaction, and adherence of rapid thermal annealed Ti/ALN were investigated by RES, AES, SIMS, XRD and a scratch test. The experimental results show that diffusion and reaction occurs at the interface of Ti/AlN when the sample is rapidly annealed. During annealing, both the O adsorbed on the surface and doped in the AlN substrate diffuse into the Ti film. At low temperature TiO2 is produced. At higher temperature O reacts with the diffused Al in the Ti film and produces an Al2O3 layer in the middle of the film. N diffuses into the Ti film and produces TiN with an interface reaction. Ti oxide is produced at the interface between the film and the substrate. Scratch test results show that interface adherence is distinctly improved by rapid annealing at low temperature and decreases at higher temperature. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Strain relaxation in initially flat SiGe film on Si(1 0 0) during rapid thermal annealing is studied. The surface roughens after high-temperature annealing, which has been attributed to the intrinsic strain in the epilayers. It is interesting to find that high-temperature annealing also results in roughened interface, indicating the occurrence of preferential interdiffusion. It is suggested that the roughening at the surface makes the intrinsic strain in the epilayer as well as the substrate unequally distributed, causing preferential interdiffusion at the SiGe/Si interface during high-temperature annealing. (C) 1999 Elsevier Science B.V. All rights reserved.
New annealing processes and explanation for novel silicon pn junctions formed by proton implantation
Resumo:
Proton-implanted n-type Si wafers were annealed at 950 degrees C to achieve novel pn junctions. The novel pn junctions are explained by the combined use of four models. The background (e.g. oxygen impurity) of an Si wafer is suggested to play a key role in creating the novel pn junction.
Resumo:
This paper describes the effect of electron irradiation and thermal annealing on LPE AlGaAs/GaAs heterojunction solar cells with various p/n junction depths. The electron irradiation experiments were performed with energy of 3 MeV, fluences ranging from 1 x 10(14) to 5 x 10(15) e/cm(2). The results obtained demonstrate that the irradiation-induced degradation of performances of the cells is mainly in the short circuit current and could be mostly recovered by annealing at 260 degrees C for 30 min. Four electron traps, E-c - 0.24 eV, E-c - 0.41 eV, E-c - 0.51 eV, E-c - 0.59 eV, were found by DLTS analysis, only two shallow levels of which could be removed by the annealing. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Self-organized InAs islands on (001) GaAs grown by molecular beam epitaxy were annealed and characterized with photoluminescence (PL) and transmission electron microscopy (TEM). The PL spectra from the InAs islands demonstrated that annealing resulted in a blueshift in peak energy, a reduction in intensity, and a narrower linewidth in the PL peak. In addition, the TEM analysis revealed the relaxation of strain in some InAs islands with the introduction of the network of 90 degrees dislocations. The correlation between the changes in the PL spectra and the relaxation of strain in InAs islands was discussed. (C) 1998 American Institute of Physics. [S0003-6951(98)01850-6].