943 resultados para SUPEROXIDE ANION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

TiO2 nanofibers with different crystal phases have been discovered to be efficient catalysts for the transesterification of alcohols with dimethyl carbonate to produce corresponding methyl carbonates. Advantages of this catalytic system include excellent selectivity (>99%), general suitability to alcohols, reusability and ease of preparation and separation of fibrous catalysts. Activities of TiO2 catalysts were found to correlate with their crystal phases which results in different absorption abilities and activation energies on the catalyst surfaces. The kinetic isotope effect (KIE) investigation identified the rate-determining step, and the isotope labeling of oxygen-18 of benzyl alcohol clearly demonstrated the reaction pathway. Finally, the transesterification mechanism of alcohols with dimethyl carbonate catalyzed by TiO2 nanofibers was proposed, in which the alcohol released the proton to form benzyl alcoholic anion, and subsequently the anion attacks the carbonyl carbon of dimethyl carbonate to produce the target product of benzyl methyl carbonate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In most radicals the singly occupied molecular orbital (SOMO) is the highest-energy occupied molecular orbital (HOMO); however, in a small number of reported compounds this is not the case. In the present work we expand significantly the scope of this phenomenon, known as SOMO-HOMO energy-level conversion, by showing that it occurs in virtually any distonic radical anion that contains a sufficiently stabilized radical (aminoxyl, peroxyl, aminyl) non-pi-conjugated with a negative charge (carboxylate, phosphate, sulfate). Moreover, regular orbital order is restored on protonation of the anionic fragment, and hence the orbital configuration can be switched by pH. Most importantly, our theoretical and experimental results reveal a dramatically higher radical stability and proton acidity of such distonic radical anions. Changing radical stability by 3-4 orders of magnitude using pH-induced orbital conversion opens a variety of attractive industrial applications, including pH-switchable nitroxide-mediated polymerization, and it might be exploited in nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Much of what we currently understand about the structure and energetics of multiply charged anions in the gas phase is derived from the measurement of photoelectron spectra of simple dicarboxylate dianions. Here we have employed a modified linear ion-trap mass spectrometer to undertake complementary investigations of the ionic products resulting from laser-initiated electron photodetachment of two model dianions. Electron photodetachment (ePD) of the \[M-2H](2-) dianions formed from glutaric and adipic acid were found to result in a significant loss of ion signal overall, which is consistent with photoelectron studies that report the emission of slow secondary electrons (Xing et al., 2010 \[201). The ePD mass spectra reveal no signals corresponding to the intact \[M-2H](center dot-) radical anions, but rather \[M-2H-CO2](center dot-) ions are identified as the only abundant ionic products indicating that spontaneous decarboxylation follows ejection of the first electron. Interestingly however, investigations of the structure and energetics of the \[M-2H-CO2](center dot-) photoproducts by ion-molecule reaction and electronic structure calculation indicate that (i) these ions are stable with respect to secondary electron detachment and (ii) most of the ion population retains a distonic radical anion structure where the radical remains localised at the position of the departed carboxylate moiety. These observations lead to the conclusion that the mechanism for loss of ion signal involves unimolecular rearrangement reactions of the nascent \[M-2H](center dot-) carbonyloxyl radical anions that compete favourably with direct decarboxylation. Several possible rearrangement pathways that facilitate electron detachment from the radical anion are identified and are computed to be energetically accessible. Such pathways provide an explanation for prior observations of slow secondary electron features in the photoelectron spectra of the same dicaboxylate dianions. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas-phase transformation of synthetic phosphatidylcholine (PC) monocations to structurally informative anions is demonstrated via ion/ion reactions with doubly deprotonated 1,4-phenylenedipropionic acid (PDPA). Two synthetic PC isomers, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (PC16:0/18:1) and 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (PC18:1/16:0), were subjected to this ion/ion chemistry. The product of the ion/ion reaction is a negatively charged complex, \[PC + PDPA - H](-). Collisional activation of the long-lived complex causes transfer of a proton and methyl cation to PDPA, generating \[PC - CH3](-). Subsequent collisional activation of the demethylated PC anions produces abundant fatty acid carboxylate anions and low-abundance acyl neutral losses as free acids and ketenes. Product ion spectra of \[PC - CH3](-) suggest favorable cleavage at the sn-2 position over the sn-1 due to distinct differences in the relative abundances. In contrast, collisional activation of PC cations is absent of abundant fatty acid chain-related product ions and typically indicates only the lipid class via formation of the phosphocholine cation. A solution phase method to produce the gas-phase adducted PC anion is also demonstrated. Product ion spectra derived from the solution phase method are similar to the results generated via ion/ion chemistry. This work demonstrates a gas-phase means to increase structural characterization of phosphatidylcholines via ion/ion chemistry. Grant Number ARC/CE0561607, ARC/DP120102922

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the molecular structure of the mineral glaucocerinite (Zn,Cu)5Al3(SO4)1.5(OH)16�9(H2O) using a combination of Raman and infrared spectroscopy. The mineral is one of the hydrotalcite supergroup of natural layered double hydroxides. The Raman spectrum is characterised by an intense Raman band at 982 cm�1 with a low intensity band at 1083 cm�1. These bands are attributed to the sulphate symmetric and antisymmetric stretching mode. The infrared spectrum is quite broad with a peak at 1020 cm�1. A series of Raman bands at 546, 584, 602, 625 and 651 cm�1 are assigned to the m4 (SO4)2� bending modes. The observation of multiple bands provides evidence for the reduction in symmetry of the sulphate anion from Td to C2v or even lower symmetry. The Raman band at 762 cm�1 is attributed to a hydroxyl deformation mode associated with AlOH units. Vibrational spectroscopy enables aspects of the molecular structure of glaucocerinite to be determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

alpha-Carboxylate radical anions are potential reactive intermediates in the free radical oxidation of biological molecules (e. g., fatty acids, peptides and proteins). We have synthesised well-defined alpha-carboxylate radical anions in the gas phase by UV laser photolysis of halogenated precursors in an ion-trap mass spectrometer. Reactions of isolated acetate ((center dot)CH(2)CO(2)) and 1-carboxylatobutyl (CH(3)CH(2)CH(2)(center dot)CHCO(2)(-)) radical anions with dioxygen yield carbonate (CO(3)(center dot-)) radical anions and this chemistry is shown to be a hallmark of oxidation in simple and alkyl-substituted cross-conjugated species. Previous solution phase studies have shown that C(alpha)-radicals in peptides, formed from free radical damage, combine with dioxygen to form peroxyl radicals that subsequently decompose into imine and keto acid products. Here, we demonstrate that a novel alternative pathway exists for two alpha-carboxylate C(alpha)-radical anions: the acetylglycinate radical anion (CH(3)C(O)NH(center dot)CHCO(2)(-)) and the model peptide radical anion, YGGFG(center dot-). Reaction of these radical anions with dioxygen results in concerted loss of carbon dioxide and hydroxyl radical. The reaction of the acetylglycinate radical anion with dioxygen reveals a two-stage process involving a slow, followed by a fast kinetic regime. Computational modelling suggests the reversible formation of the C(alpha) peroxyl radical facilitates proton transfer from the amide to the carboxylate group, a process reminiscent of, but distinctive from, classical proton-transfer catalysis. Interestingly, inclusion of this isomerization step in the RRKM/ME modelling of a G3SX level potential energy surface enables recapitulation of the experimentally observed two-stage kinetics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phenylperoxyl radical has long been accepted as a critical intermediate in the oxidation of benzene and an archetype for arylperoxyl radicals in combustion and atmospheric chemistry. Despite being central to many contemporary mechanisms underpinning these chemistries, reports of the direct detection or isolation of phenylperoxyl radicals are rare and there is little experimental evidence connecting this intermediate with expected product channels. We have prepared and isolated two charge-tagged phenyl radical models in the gas phase [i.e., 4-(N,N,N-trimethylammonium) phenyl radical cation and 4-carboxylatophenyl radical anion] and observed their reactions with dioxygen by ion-trap mass spectrometry. Measured reaction rates show good agreement with prior reports for the neutral system (k(2)[(Me3N+)C6H4 center dot + O-2] = 2.8 x 10(-11) cm(3) molecule(-1) s(-1), Phi = 4.9%; k(2)[(-O2C)C6H4 center dot + O-2] = 5.4 x 10(-1)1 cm(3) molecule(-1) s(-1), Phi = 9.2%) and the resulting mass spectra provide unequivocal evidence for the formation of phenylperoxyl radicals. Collisional activation of isolated phenylperoxyl radicals reveals unimolecular decomposition by three pathways: (i) loss of dioxygen to reform the initial phenyl radical; (ii) loss of atomic oxygen yielding a phenoxyl radical; and (iii) ejection of the formyl radical to give cyclopentadienone. Stable isotope labeling confirms these assignments. Quantum chemical calculations for both charge-tagged and neutral phenylperoxyl radicals confirm that loss of formyl radical is accessible both thermodynamically and entropically and competitive with direct loss of both hydrogen atom and carbon dioxide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ion (C6CH2)(.-) is formed in the gas phase by the process -C=C-C=C-C=CH2OEt --> (C6CH2)(.-) + EtO., and charge stripping of the product radical anion yields the carbenoid neutral C6CH2; this can be either a singlet (the ground state), which is best represented as the carbene :C=C=C=C=C=C=CH2, or a triplet; the adiabatic electron affinity and the dipole moment of the carbenoid neutral are calculated to be 2.82 eV and 7.33 D respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A bridgehead adamantyl peroxyl radical has been prepared and isolated in the gas phase by the reaction of a distonic radical anion with dioxygen in a quadrupole ion-trap mass spectrometer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mineral leightonite, a rare sulphate mineral of formula K2Ca2Cu(SO4)4.2H2O, has been studied using a combination of electron probe and vibrational spectroscopy. The mineral is characterized by an intense Raman band at 991 cm-1 attributed to the SO2- 4 m1 symmetric stretching mode. A series of Raman bands at 1047, 1120, 1137, 1163 and 1177 cm-1 assigned to the SO2- 4 m3 antisymmetric stretching modes. The observation of multiple bands shows that the symmetry of the sulphate anion is reduced. Multiple Raman and infrared bands in the OH stretching region shows that water in the structure of leightonite is in a range of molecular environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deprotonated o, m-, and p-methoxyacetanilide show pronounced peaks in their collision-induced tandem mass spectra (MS/MS) produced by losses of the elements of C2H6. It is proposed that this reaction is a 'cross-ring' internal S(N)2 reaction involving an incipient methyl anion. For example, p-CH3O-C6H4-N--CO-CH3--> [(p.CH3O-C6H4-N=C=O)CH3-]--> O---C6H4-N=C=O+C2H6.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neutral C3O has been prepared by collision induced neutralisation of the precursor radical anion formed by the reaction C-=C-CO-OEt --> C3O-. +EtO. . The similar neutralisaaion reionisation (-NR+) and charge reversal (CR) spectra of C3O-. indicate that the potential surfaces of C3O and C3O+. show favourable vertical Franck-Condon overlap, This suggests that the bond connectivities of anion, neutral and cation C3O are the same. Copyright (C) 1999 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to assist with the development of more selective and sensitive methods for thyroid hormone analysis the \[M-H](-) anions of the iodothyronines T4, T3, rT3, (3,5)-T2 and the non-iodinated thyronine (TO) have been generated by negative ion electrospray mass spectrometry. Tandem mass spectra of these ions were recorded on a triple-quadrupole mass spectrometer and show a strong analogy with the fragmentation pathways of the parent compound, tyrosine. All iodothyronines also show significant abundances of the iodide anion in their tandem mass spectra, which represents an attractive target for multiple reaction monitoring (MRM) analysis, given that iodothyronines are the only iodine bearing endogenous molecules. Characteristic fragments are observed at m/z 359.7 and 604.5 for rT3 but are absent in the spectrum of T3, thus differentiating the two positional isomers. The striking difference in the fragmentation patterns of these regioisomeric species is attributed to the increased acidity of the phenol moiety in rT3 compared with T3. Copyright (C) 2005 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computations at the RCCSD(T)/aug-cc-pVDZ//B3LYP/6-31G* level of theory indicate that neutral C6CO is a stable species. The ground state of this neutral is the singlet cumulene oxide :C=C=C=C=C=C=C=O. The adiabatic electron affinity and dipole moment of singlet C6CO are 2.47 eV and 4.13 D, respectively, at this level of theory. The anion (C6CO)(-.) should be a possible precursor to this neutral. It has been formed by an unequivocal synthesis in the ion source of a mass spectrometer by the S(N)2(Si) reaction between (CH3)(3)Si-C=C-C=C-C=C-CO-CMe3 and F- to form C-=C-C=C-C=C-CO-CMe3 which loses Me3C in the source to form C6CO-.. Charge stripping of this anion by vertical Franck-Condon oxidation forms C6CO, characterised by the neutralisation-reionisation spectrum (-NR+) of C6CO-., which is stable during the timeframe of this experiment (10(-6) s), Copyright (C) 2000 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deprotonated o, m-, and p-methoxyacetanilide show pronounced peaks in their collision-induced tandem mass spectra (MS/MS) produced by losses of the elements of C2H6. It is proposed that this reaction is a 'cross-ring' internal S(N)2 reaction involving an incipient methyl anion. For example, p-CH3O-C6H4-N--CO-CH3--> [(p.CH3O-C6H4-N=C=O)CH3-]--> O---C6H4-N=C=O+C2H6.