946 resultados para SEMICONDUCTOR NANOCRYSTALLITES


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The semiconductor photocatalyst, platinised titanium dioxide, Pt/TiO2, is used to promote the destruction of bromate ions to bromide and oxygen by 254 nm ultraviolet light. The kinetics of bromate removal are first order with respect to [BrO3-] and are inhibited, although not completely, by competitive adsorption by other anions, including bromide and sulfate ions. The Pt/TiO2 can be used not only as a powder dispersion, but also as a thin film in a flow reactor for the destruction of bromate ions. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation in the activation energy for the initial stage of photomineralization of 4-chlorophenol (4-CP), sensitized by Degussa P25 TiO2 was investigated as a function of P-O2 and [4-CP]. A model was developed based on the incorporation of Arrhenius-type functions in a general rate equation for the initial stage of photomineralization. Values of the essential constants in the model were derived from a few simple experiments. Positive, negative and zero apparent activation energies were predicted using the model, and verified experimentally, under moderate reaction conditions. The general applicability of the model is briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic principles of the photooxidative mineralization of organic pollutants by O2, sensitized by TiO2, are described. The kinetics of this process as a function of [TiO2], [organic pollutant], [O2], light intensity, temperature, pH, and the type of anion present are discussed, and a general kinetic model is presented. Standard test and demonstration systems for water purification by TiO2 photocatalysis are described and other novel applications of semiconductor photocatalysis are outlined.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical properties of plasmonic semiconductor devices fabricated by focused ion beam (FIB) milling deteriorate because of the amorphisation of the semiconductor substrate. This study explores the effects of combining traditional 30 kV FIB milling with 5 kV FIB patterning to minimise the semiconductor damage and at the same time maintain high spatial resolution. The use of reduced acceleration voltages is shown to reduce the damage from higher energy ions on the example of fabrication of plasmonic crystals on semiconductor substrates leading to 7-fold increase in transmission. This effect is important for focused-ion beam fabrication of plasmonic structures integrated with photodetectors, light-emitting diodes and semiconductor lasers.

Relevância:

20.00% 20.00%

Publicador: