945 resultados para SE(T) SPECIMEN
Resumo:
Ultra high molar mass polyethylene (UHPE) powder as polymerized in a slurry process has been studied, in its nascent state, after recrystallization on rapid cooling from the melt and after hot compression molding to a film, by DSC, effect of annealing the recrystallized specimen at 120 similar to 130 degreesC, morphology by polarizing optical microscopy and small angle X-ray scattering. Based on the experimental results obtained the macromolecular condensed state of the nascent UHPE powder is a rare case of a multi-chain condensed state of non-interpenetrating chains, involving interlaced extended chain crystalline layers and relaxed parallel chain amorphous layers. On melting, a nematic rubbery state of nanometer size domain resulted. The nematic-isotropic transition temperature was judged from literature data to be at least 220 degreesC, possibly higher than 300 degreesC, the exact temperature is however not sue because of chain degradation at such high temperatures. The recrystallization process from the melt is a crystallization from a nematic rubbery state. The drop of remelting peak temperature by 10 K of the specimen recrystallized from its melt as compared to the nascent state has its origin in the decrease both of the crystalline chain stem length and of the degree of crystallinity. The remelting peak temperature could be returned close to that of the nascent state by annealing at 120 similar to 130 degreesC.
Resumo:
Aimed at saving the radiation dose required to crosslinking the polyamid-1010, BMI/PA1010 systems containing different amounts of difunctional crosslinking agent N,N'-bis-maleimide-4,4'-biphenyl methane (BMI) were prepared and the structure changes at the crystallographic and supermolecular levels before and after irradiation were studied by using WAXD, SAXS, and DSC techniques. It was found that by incorporation of BMI the microcrystal size L-100 is lowered due to the formation of hydrogen bond between the carbonyl oxygen of BMI and the amide hydrogen of PA1010 in the hydrogen bonded plane, and the overall crystallinity W-c is also decreased. The presence of BMI causes the crystal lamella thickness d(c) to decrease and greatly thickens the transition zone d(tr) between the crystalline and amorphous regions. As for the irradiated specimen, the maximum increments in the L-100 and W-c against dose curves decrease with BMI content, and the interception point D-i, at which the L-100 and W-c curves intercept their respective horizontal line of L-100/L-100(0) and W-c/W-c(0)=1, shift to lower dose with an increase in BMI concentration. In addition. the mechanism of the radiation chemical reactions in the three different phases under the action of BMI are discussed with special focus on the interface region. (C) 1999 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Two types of macromolecular free radicals -CH2CONHCHCH2- (a) and -CH2C=O (b) trapped in irradiated Polyamide-1010 (PA1010) and PA1010 filled with neodymium oxide (Nd2O3) were characterized by an ESR approach. It was found out that a was mainly trapped in the fold surface of the lamellae and b in the amorphous phase. This result suggested that trapped radicals mainly existed in the noncrystalline phases. The effect of the fold surface area of the lamellae on the behavior of the trapped radicals are discussed in this article. Whether for the specimens with similar crystallinities but different crystallite sizes or for those with the same concentration of neodymium oxide but different crystallinities, radical a exists dominantly in a specimen with a larger fold surface area of the lamellae. Under a certain circumstance, radical a can transform into radical b for a specimen with a larger fold surface area of the lamellae. It means that the fold surface area of the lamellae plays an important role in the transformation of radical a to b. (C) 1998 John Wiley & Sons, Inc.
Resumo:
Two types of macromolecular free radicals similar to CH2CONH(C) over dotHCH(2) similar to (a) and similar to CH2(C) over dot = O (b) trapped in irradiated polyamide-1010 (PA1010) and PA1010 filled with neodymium oxide (Nd2O3) were characterized by an ESR approach. It is found that (a) is prevailingly trapped in the fold surface of the lamellae and (b) in the amorphous phase. This result suggests that trapped radicals mainly exist in the non-crystalline phases. The effect of the fold surface area of the lamellae on the behavior of the trapped radicals is discussed in this paper. Whether for the specimens with similar crystallinities, but different crystallite sizes, or for those with the same concentration of neodymium oxide, but different crystallinities, radical (a) exists dominantly in the specimen with a larger fold surface area of the lamellae. Under certain circumstances, radical (a) can transform into radical (b), obviously for a specimen with a larger fold surface area of the lamellae. It means that the fold surface area of the lamellae plays an important role in the transformation of radical (a) to (b). (C) 1997 Elsevier Science Ltd.
Resumo:
Tension-tension fatigue tests were conducted on unnotched injection moulded poly(phenylene ether ketone) (PEK-C) specimens with two stress ratios, R. The fatigue behaviour of this material is described. The S-N curves (S = alternating stress, N = number of cycles to failure) for different R values have the same general shape, but the curve for bigger R is shifted to long cycles. A fatigue lifetime inversion is observed from constructed S-N curves. Examinations of failure surfaces and analyses of the fatigue data reveal that the fatigue failure mechanism of the material studied is crack growth dominated. But the manner of the fatigue crack initiation and propagation depends on the maximum cyclic stress applied. At higher stresses, the fatigue crack originates at the corner of the specimen and propagates inward; at lower stresses, the fatigue crack nucleates at an internal flaw of the specimen and propagates outward. The fatigue lifetime inversion corresponds to the transition of crack initiation and propagation from one mode to the other. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
The miscibility and morphology of polyimide/polyimide blends, PEI-E/PTI-E(a)) and PBPI-E/IPTI-E(a)), have been studied by means of C-13 CPMAS NMR technique. The results indicate that PEI-E/PTI-E blends are miscible on a molecular level, but molecular aggregation exists in pure PBPI-E specimen as well as PBPI-E/PTI-E blends with high content of PBPI-E, which vanishes in the blends with high content of PTI-E. When the content of PBPI-E is higher than that of PTI-E, the addition of PTI-E to PBPI-E has almost no effect on the size of the PBPI-E rigid domains, but has a large effect on the populations of the PBPI-E rigid domains. It is the intermolecular charge-transfer interaction that plays a critical role in the miscibility of PEI-E/PTI-E and PBPI-E/PTI-E blends.
Resumo:
The fracture behavior of phenolphthalein polyether-ether ketone (PEK-C) affected by physical aging at 200 degrees C was studied by tensile experiments, scanning electron microscopy, and differential scanning calorimetry observations. The ductile-brittle fracture transition (DBT) caused by physical aging can be considered as a competition between fracture mechanisms of crazing and shear yielding. The aging time required for the DBT is found to be around 400 h, based on the morphological studies and tensile experiments. The shear yielding component of the mechanical deformation could erase the aging effect, thus a deaging phenomenon occurs. We found that the deaging phenomenon has an intrinsic relationship with the extent of aging in the specimen and as a result of the fracture behavior. (C) 1995 John Wiley and Sons, Inc.
Resumo:
The correlation between mechanical relaxation and ionic conductivity was investigated in a two-component epoxy network-LiClO4 electrolyte system. The network was composed of diglycidyl ether of polyethylene glycol (DGEPEG) and triglycidyl ether of glycerol (TGEG). The effects of salt concentration, molecular weight of PEG in DGEPEG and the proportion of DGEPEG (1000) in DGEPEG/TGEG ratio on the ionic conductivity and the mechanical relaxation of the system were studied. It was found that, among the three influential factors, the former reinforces the network chains, reduces the free volume fraction and thus increases the relaxation time of the segmental motion, which in turn lowers the ionic conductivity of the specimen. Conversely, the latter two increase the free volume and thus the chain flexibility, showing an opposite effect. From the iso-free-volume plot of the shift factor log at and reduced ionic conductivity, it is noted that the plot can be used to examine the temperature dependence of segmental mobility and seems to be useful to judge whether the incorporated salt has been dissociated completely. Besides, the ionic conductivity and relaxation time at constant reference temperature are linearly correlated with each other in all the three cases. This result gives an additional experimental confirmation of the coordinated motion model of the ionic hopping with the moving polymer chain segment, which is generally used to explain the ionic conduction in non-glassy amorphous polymer electrolytes.
Resumo:
By using WAXD, DSC and gel fraction determination techniques, the mechanism of radiation crosslinking of polyethylene oxide (PEO) was explored, and the dependence of aggregated state on the chemical reaction and physical structure was also discussed. It was found that just like other semi-crystalline polymers, the state of aggregation of the specimen has a profound influence on the radiation effects on PEO. On the contrary, the crystalline structure of the specimen is severely affected with the increase in radiation dose and eventually amorphortized when subjected to an extremely high radiation dose.
Resumo:
Unique crystalline morphologies of solution-cast films of HDPE/iPP blends were investigated by means of transmission electron microscopy (TEM), electron diffraction, metal shadowing and specimen-tilt techniques. The unique morphologies come from an epitaxial crystallization of HDPE on iPP. The contact planes of the two kinds of crystals are (100) of HDPE and (010) of iPP, while the intercrossing angle between their chain axes is about 50-degrees. The HDPE existed with different crystalline morphologies in the two kinds of crystalline regions of iPP spherulites, i.e. cross-hatched and single-crystal-type structures. Based on structural analysis, two models of epitaxial growth of HDPE on iPP are proposed.
Resumo:
End-linked hydroxyl-terminated polybutadiene containing unattached linear polybutadiene was used to study the effect of reptating species on the fracture mechanics of rubber networks. The concentration of reptating species in the networks ranged from 0 to 100%. The fracture mechanics of the networks was described using the critical strain energy release rate in mode III testing, i.e. the tearing energy. The tearing energy was measured at room temperature using a 'trouser' specimen at a strain rate spanning five logarithmic decades. When the strain rate was as low as 10(-4) s-1, the tearing energy of the networks increased with reduction in reptating species. In this case the reptating species did not contribute to the tearing energy of the networks due to relaxation. Hence, the tearing energy increased with the number of crosslinked chains per unit volume in the networks. At a strain rate ranging from 10(-3) to 10(-1) s-1, the tearing energy of the networks was governed by local viscosity. The tearing energies of the networks containing various amounts of reptating species were superimposed to give a master curve based on the Williams-Landel-Ferry equation.
Resumo:
Epitaxial crystallization of high-density polyethylene (HDPE) on isotactic polypropylene (iPP) in solution-cast films has been investigated by electron microscopy. The specimen-tilt technique of electron microscopy has been used to study the structural relationship between HDPE and iPP crystals. HDPE exhibits different crystalline morphologies in the two basic types of iPP spherulite textures, cross-hatched and lathlike regions. In the former, the crystallographic c axis of HDPE lamellae is in the film plane, while in the latter, the c axis of HDPE crystallites is at an angle of about 50-degrees with the normal of the film. In both structural regions of iPP, however, the contact planes of epitaxial growth are (0 1 0) for iPP and (1 0 0) for HDPE.
Resumo:
铜管一直是电厂凝汽器的主要应用管材,但由于其抗冲刷和抵御污染物腐蚀的能力差,特别不耐氨蚀,美国和欧洲大量使用不锈钢管替代铜管作为冷凝管,然而不锈钢管在我国的运用仅处于初步阶段。 常使用锌、铝阳极对铜管进行牺牲阳极保护,然而存在着电位差过大、阳极溶解过快的问题。铁基牺牲阳极与铜电位差适当、来源广泛、价格便宜,在一些工程上有所应用,但是目前针对铁基牺牲阳极的理论研究报道很少。 本文选用紫铜管、304不锈钢管作为实验用管材,首先运用实验室全浸实验、极化曲线和电化学阻抗研究了二者在海水和淡水中的腐蚀性能以及CO2、溶解氧对其腐蚀的影响。结果表明:CO2会加速二者的腐蚀,溶解氧却对它们的腐蚀影响不同,促进铜管的腐蚀却抑制不锈钢管的腐蚀;随浸泡时间的延长,紫铜管由于表面产物膜的生成耐蚀性提高,304不锈钢管的耐蚀性却降低;淡水中,304不锈钢管和紫铜管都具有很好的耐蚀性能。随后,运用失重法和极化曲线对比研究了紫铜管、304不锈钢管的氨蚀性能,运用SEM分析和电化学阻抗研究了紫铜在不同浓度氨溶液中的腐蚀机理。发现,304不锈钢管的耐氨蚀能力远远好于铜管;溶解氧是影响氨蚀的关键因素,其对二者氨蚀的影响也不同;紫铜管在低氨浓度和高氨浓度溶液中腐蚀机理和产物不同,低氨浓度时形成保护性的产物膜(CuO 和Cu(OH)2),高氨浓度时由活化溶解控制,生成可溶的[Cu (NH3)4]2+。 选用工业纯铁、35钢为牺牲阳极材料。恒电流实验结果表明它们具有良好的牺牲阳极性能;通过极化曲线和自腐蚀电位测试分析,认为将二者用于铜管牺牲阳极保护是可行的;实验室阴极保护效果测试表明,工业纯铁和35钢对紫铜管具有良好的保护效果,保护度达90%以上。
Resumo:
Spark discharge was the representative phenomenon of Micro-arc oxidation (MAO) method distinguished from other electrochemical oxidation methods. Under the spark discharge treatment, characteristics of the anodic layer were significantly changed. To investigate the influences of the spark discharge, a piece of magnesium alloy AZ91D specimen was partly treated by MAO method in alkaline silicate solution. And the microstructure, element distributions as well as the surface potential distributions of the specimen were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and scanning Kelvin probe (SKP) technique. As a result of intensive spark discharge treatment, porous external layer with dense internal layer were formed on Mg alloy surface. At the same time, the depositions of OH- and SiO32- ions were accelerated, which resulted in the enrichment of element oxygen and silicon at the spark discharge region. Moreover, due to the compact internal layer, the intensive spark discharge region exhibited more positive potentials with respect to other regions, which meant this region could restrain the ejection of electron and provide effective protection to the substrate. In addition, it was found that oxygen played a vital role in determining the intensity and size of sparks, and abundant oxygen resulted in intensive and larger sparks. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper reports the occurrence of a marine brachyuran crab species Eucrate alcocki SerSne, in SerSne et al., 1973, of the family Euryplacidae Stimpson, 1871, for first time from India, based on a male specimen from Parangipettai fish landing centre in Bay of Bengal, Southeast Coast of India. Although morphologically corresponding with what is currently defined as E. alcocki, the color pattern of the carapace of the present specimen is rather different from that of the Chinese material-only the anterior fifth of the carapace is marked with scattered red spots, the rest of the surface is yellowish, with four unusually shaped red blotches which almost look like Sanskrit characters.