1000 resultados para Roldán, Gustavo
Resumo:
To boost logic density and reduce per unit power consumption SRAM-based FPGAs manufacturers adopted nanometric technologies. However, this technology is highly vulnerable to radiation-induced faults, which affect values stored in memory cells, and to manufacturing imperfections. Fault tolerant implementations, based on Triple Modular Redundancy (TMR) infrastructures, help to keep the correct operation of the circuit. However, TMR is not sufficient to guarantee the safe operation of a circuit. Other issues like module placement, the effects of multi- bit upsets (MBU) or fault accumulation, have also to be addressed. In case of a fault occurrence the correct operation of the affected module must be restored and/or the current state of the circuit coherently re-established. A solution that enables the autonomous restoration of the functional definition of the affected module, avoiding fault accumulation, re-establishing the correct circuit state in real-time, while keeping the normal operation of the circuit, is presented in this paper.
Resumo:
To increase the amount of logic available in SRAM-based FPGAs manufacturers are using nanometric technologies to boost logic density and reduce prices. However, nanometric scales are highly vulnerable to radiation-induced faults that affect values stored in memory cells. Since the functional definition of FPGAs relies on memory cells, they become highly prone to this type of faults. Fault tolerant implementations, based on triple modular redundancy (TMR) infrastructures, help to keep the correct operation of the circuit. However, TMR is not sufficient to guarantee the safe operation of a circuit. Other issues like the effects of multi-bit upsets (MBU) or fault accumulation, have also to be addressed. Furthermore, in case of a fault occurrence the correct operation of the affected module must be restored and the current state of the circuit coherently re-established. A solution that enables the autonomous correct restoration of the functional definition of the affected module, avoiding fault accumulation, re-establishing the correct circuit state in realtime, while keeping the normal operation of the circuit, is presented in this paper.
Resumo:
To increase the amount of logic available to the users in SRAM-based FPGAs, manufacturers are using nanometric technologies to boost logic density and reduce costs, making its use more attractive. However, these technological improvements also make FPGAs particularly vulnerable to configuration memory bit-flips caused by power fluctuations, strong electromagnetic fields and radiation. This issue is particularly sensitive because of the increasing amount of configuration memory cells needed to define their functionality. A short survey of the most recent publications is presented to support the options assumed during the definition of a framework for implementing circuits immune to bit-flips induction mechanisms in memory cells, based on a customized redundant infrastructure and on a detection-and-fix controller.
Resumo:
Fault injection is frequently used for the verification and validation of the fault tolerant features of microprocessors. This paper proposes the modification of a common on-chip debugging (OCD) infrastructure to add fault injection capabilities and improve performance. The proposed solution imposes a very low logic overhead and provides a flexible and efficient mechanism for the execution of fault injection campaigns, being applicable to different target system architectures.
Resumo:
As technology is increasingly being seen as a facilitator to learning, open remote laboratories are increasingly available and in widespread use around the world. They provide some advantages over traditional hands-on labs or simulations. This paper presents the results of integrating the open remote laboratory VISIR into several courses, in various contexts and using various methodologies. These integrations, all related to higher education engineering, were designed by teachers with different perspectives to achieve a range of learning outcomes. The degree to which these VISIR-related outcomes were accomplished is discussed. The results reflect the levels of student engagement and learning and of teacher involvement. From the analysis, a connection between these two aspects was traced, although only related to the user profiles. VISIR is shown to be always of benefit for more motivated students, but this benefit can be maximized under particular conditions and characteristics.
Resumo:
Institutions have been creating their own specific weblab infrastructures. Usually, they use distinct software and hardware architectures comprehending instruments and modules (I&M) able to be parameterized but difficult to be shared. These aspects are impairing their widespread in education, since collaboration between institutions, in developing and sharing resources, is still low. To handle both aspects, this paper proposes the adoption of the IEEE1451.0 Std. with FPGA technology for creating reconfigurable weblab infrastructures. It is suggested the adoption of an IEEE1451.0 infrastructure with compatible instruments, described in Hardware Description Languages (HDL), to be reconfigured in FPGA-based boards. Besides an overview of the IEEE1451.0 Std., this paper presents a solution currently under development which seeks to enable the reconfiguration and the remote control of weblab infrastructures using a set of IEEE1451.0 HTTP commands.
Resumo:
Concepts like E-learning and M-learning are changing the traditional learning place. No longer restricted to well-defined physical places, education on Automation and other Engineering areas is entering the so-called ubiquitous learning place, where even the more practical knowledge (acquired at lab classes) is now moving into, due to emergent concepts such as Remote Experimentation or Mobile Experimentation. While Remote Experimentation is traditionally regarded as the remote access to real-world experiments through a simple web browser running on a PC connected to the Internet, Mobile Experimentation may be seen as the access to those same (or others) experiments, through mobile devices, used in M-learning contexts. These two distinct client types (PCs versus mobile devices) pose specific requirements for the remote lab infrastructure, namely the ability to tune the experiment interface according to the characteristics (e.g. display size) of the accessing device. This paper addresses those requirements, namely by proposing a new architecture for the remote lab infrastructure able to accommodate both Remote and Mobile Experimentation scenarios.
Resumo:
Web-based course management and delivery is regarded by many institutions as a key factor in an increasingly competitive education and training world, but the systems currently available are largely unsatisfactory in terms of supporting collaborative work and access to practical science facilities. These limitations are less important in areas where “pen-and-paper” courseware is the mainstream, but become unacceptably restrictive when student assignments require real-time teamwork and access to laboratory equipment. This paper presents a web-accessible workbench for electronics design and test, which was developed in the scope of an European IST project entitled PEARL, with the aim of supporting two main features: full web access and collaborative learning facilities.
Resumo:
This paper presents a low-cost scaled model of a silo for drying and airing cereal grains. It allows the control and monitor of several parameters associated to the silo's operation, through a remote accessible infrastructure. The scaled model consists of a 2.50 m wide × 2.10 m long plant with all control and monitor capacities provided by micro-Web servers. An application running on the micro-Web servers enables storing all parameters in a data basis for later analysis. The implemented model aims to support a remote experimentation facility for technological education, research-oriented tutorials, and industrial applications. Given the low-cost requirement, this remote facility can be easily replicated in other institutions to support a network of remote labs, which encompasses the concurrent access of several users (e.g. students).
Resumo:
The new generations of SRAM-based FPGA (field programmable gate array) devices are the preferred choice for the implementation of reconfigurable computing platforms intended to accelerate processing in real-time systems. However, FPGA's vulnerability to hard and soft errors is a major weakness to robust configurable system design. In this paper, a novel built-in self-healing (BISH) methodology, based on run-time self-reconfiguration, is proposed. A soft microprocessor core implemented in the FPGA is responsible for the management and execution of all the BISH procedures. Fault detection and diagnosis is followed by repairing actions, taking advantage of the dynamic reconfiguration features offered by new FPGA families. Meanwhile, modular redundancy assures that the system still works correctly
Resumo:
Dynamically reconfigurable systems have benefited from a new class of FPGAs recently introduced into the market, which allow partial and dynamic reconfiguration at run-time, enabling multiple independent functions from different applications to share the same device, swapping resources as needed. When the sequence of tasks to be performed is not predictable, resource allocation decisions have to be made on-line, fragmenting the FPGA logic space. A rearrangement may be necessary to get enough contiguous space to efficiently implement incoming functions, to avoid spreading their components and, as a result, degrading their performance. This paper presents a novel active replication mechanism for configurable logic blocks (CLBs), able to implement on-line rearrangements, defragmenting the available FPGA resources without disturbing those functions that are currently running.
Resumo:
Fragmentation on dynamically reconfigurable FPGAs is a major obstacle to the efficient management of the logic space in reconfigurable systems. When resource allocation decisions have to be made at run-time a rearrangement may be necessary to release enough contiguous resources to implement incoming functions. The feasibility of run-time relocation depends on the processing time required to set up rearrangements. Moreover, the performance of the relocated functions should not be affected by this process or otherwise the whole system performance, and even its operation, may be at risk. Relocation should take into account not only specific functional issues, but also the FPGA architecture, since these two aspects are normally intertwined. A simple and fast method to assess performance degradation of a function during relocation and to speed up the defragmentation process, based on previous function labelling and on the application of the Euclidian distance concept, is proposed in this paper.
Resumo:
El desarrollo de equipos ultrasonográficos portátiles ha permitido incorporar esta técnica a los métodos de detección precoz de la Hidatidosis Humana. En esta experiência fueron efectuadas 690 ecografias, hallándose un 5.51% de imágenes compatibles en población general y un 12.24% en grupos de riesgo (convivientes de casos operados). Se observo una disminución significativa de los porcentajes de infección en el hombre en población general en Ias áreas bajo programa de control, utilizándose Ias encuestas ecográficas para esta determinación. Se concluyó sobre la posibilidad de incorporar la ecografía a los sistemas de vigilância epidemiológica de la hidatidosis humana.
Resumo:
International Workshop on solutions that Enhance Informal LEarning Recognition – WEILER 2013
Resumo:
The effectiveness of VISIR is compared to other experimentation activities under the point of view presented by the professor Soysal in 2000. Advantages and limitations are discussed in terms of equipment availability, infrastructure cost, and contribution to various elements of experimental learning.