700 resultados para Reworked palynomorphs
Resumo:
Calcareous nannofossils were studied in 574 Neogene samples recovered from eight sites drilled in block-faulted basins on the continental margin of Oman. This portion of the Arabian Sea experiences seasonal upwelling associated with the southwest monsoon. Not surprisingly, some of the more typical Neogene warm-water nannoplankton are either missing entirely or are extremely rare in these sediments. Coccolithus pelagicus, a typical cold-water indicator, is extremely abundant in many samples of late Pliocene to early Pleistocene age. These intervals correspond to periods of Northern Hemisphere glaciation. Reworked Late Cretaceous and Cenozoic nannofossils are found in a majority of the samples. They were probably carried from the Arabian Peninsula or the continent of Africa on strong southwest summer winds. Ages for the various nannofossil events were calculated by projecting the nannofossil datums onto the magnetostratigraphic scale for Sites 724, 727, and 728. These are the first ages for the various nannofossil datums derived from Oman Margin sediments. The following ages have been calculated for these nannofossil events: FAD Emiliania huxleyi, 0.23 Ma; LAD Pseudoemiliania lacunosa, 0.38 Ma; FAD Helicosphaera inversa, 0.42 Ma; top of acme of Reticulofenestra sp. A, 0.70 Ma; FAD Gephyrocapsaparallela, 0.85 Ma; LAD Gephyrocapsa spp. (large), 1.07 Ma; LAD Helicosphaera sellii, 1.34 Ma; LAD Calcidiscus macintyrei, 1.47 Ma; FAD Gephyrocapsa oceanica, 1.53 Ma; FAD Gephyrocapsa caribbeanica, 1.80 Ma; LAD Discoaster brouweri, 2.03 Ma; LAD Discoasterpentaradiatus, 2.31 Ma; LAD Discoaster surculus, 2.42; LAD Discoaster tamalis, 2.77 Ma; LAD Sphenolithus abies, 3.44 Ma; and LAD Reticulofenestra pseudoumbilica, 3.44 Ma.
Resumo:
The Belgica Trough and the adjacent Belgica Trough Mouth Fan in the southern Bellingshausen Sea (Pacific sector of the Southern Ocean) mark the location of a major outlet for the West Antarctic Ice Sheet during the Late Quaternary. The drainage basin of an ice stream that advanced through Belgica Trough across the shelf during the last glacial period comprised an area exceeding 200,000 km**2 in the West Antarctic hinterland. Previous studies, mainly based on marine-geophysical data from the continental shelf and slope, focused on the bathymetry and seafloor bedforms, and the reconstruction of associated depositional processes and ice- drainage patterns. In contrast, there was only sparse information from seabed sediments recovered by coring. In this paper, we present lithological and clay mineralogical data of 21 sediment cores collected from the shelf and slope of the southern Bellingshausen Sea. Most cores recovered three lithological units, which can be attributed to facies types deposited under glacial, transitional and seasonally open-marine conditions. The clay mineral assemblages document coinciding changes in provenance. The relationship between the clay mineral assemblages in the subglacial and proglacial sediments on the shelf and the glacial diamictons on the slope confirms that a grounded ice stream advanced through Belgica Trough to the shelf break during the past, thereby depositing detritus eroded in the West Antarctic hinterland as soft till on the shelf and as glaciogenic debris flows on the slope. The thinness of the transitional and seasonally open-marine sediments in the cores suggests that this ice advance occurred during the last glacial period. Clay mineralogical, acoustic sub-bottom and seismic data furthermore demonstrate that the palaeo-ice stream probably reworked old sedimentary strata, including older tills, on the shelf and incorporated this debris into its till bed. The geographical heterogeneity of the clay mineral assemblages in the sub- and proglacial diamictons and gravelly deposits indicates that they were eroded from underlying sedimentary strata of different ages. These strata may have been deposited during either different phases of the last glacial period or different glacial and interglacial periods. Additionally, the clay mineralogical heterogeneity of the soft tills recovered on the shelf suggests that the drainage area of the palaeo-ice stream flowing through Belgica Trough changed through time.
Resumo:
The study of particulate organic matter (OM) in Arctic Ocean sediments from the Late Cretaceous to the Eocene (IODP Expedition 302) has revealed detailed information about the aquatic/marine OM fluxes, biological sources, preservation and export of terrestrial material. Here, we present detailed data from maceral analysis, vitrinite reflectance measurements and organic geochemistry. During the Campanian/Paleocene, fluxes of land-derived OM are indicated by reworked and oxidized macerals (vitrinite, inertinite) and terrigenous liptinite (cutinite, sporinite). In the Early Eocene, drastic environmental changes are indicated by peaks in aquatic OM (up to 40-45%, lamalginite, telalginite, liptodetrinite, dinoflagellate cysts) and amorphous OM (up to 50% bituminite). These events of increased aquatic OM flux, similar to conditions favoring black shale deposition, correlate with the global d13C events "Paleocene/Eocene Thermal Maximum" (PETM) and "Elmo-event". Freshwater discharge and proximity of the source area are documented by freshwater algae material (Pediastrum, Botryococcus) and immature land-plant material (corphuminite, textinite). We consider that erosion of coal-bearing sediments during transgression time lead to humic acids release as a source for bituminite deposited in the Early Eocene black shales.
Resumo:
Diatom assemblages from the middle part of the Pliocene (3.2-2.5 Ma) were investigated from Ocean Drilling Program Sites 1016, 1021, and 1022 in an effort to infer paleotemperature fluctuations off California. Diatoms are very sparse in virtually all of the samples that were examined from Sites 1016 and 1021. This is presumably because these sites were seaward (west) of the coastal zone of diatom productivity during the middle part of the Pliocene. Diatoms are relatively common in the vast majority of samples that were examined from Hole 1022A. Diatom assemblages are dominated by Chaetoceros spores (a coastal upwelling component), the cold-water (subarctic) taxa Neodenticula kamtschatica and its descendant Neodenticula koizumii, and Thalassionema nitzschioides, a temperate taxon that is typically found at the seaward edge of coastal upwelling zones. Paleotemperature interpretations, however, are not possible at this time because of the scarcity of comparative modern core-top data.
Resumo:
Sediments of the Equatorial Atlantic (core GeoB 1105-4) have been investigated for both calcareous dinoflagellates and organic-walled dinoflagellate cysts. In order to determine the ecological affinity of calcareous dinoflagellates the statistical methods of Detrended Correspondence Analysis (DCA) and Redundancy Analysis (RDA) were used. Utilising DCA, distribution patterns of calcareous dinoflagellates have been compared with those of the ecologically much better known organic-walled dinoflagellate cysts. This method was also used to determine which environmental gradients have a major influence on the species composition. By using existing environmental information based on benthic and planktic foraminifera, such as Sea Surface Temperature (SST) and stable oxygen and carbon isotopes, as well as information on the amount of Calcium Carbonate and Total Organic Carbon (TOC) in bottom sediments, these gradients could be interpreted in terms of productivity and glacial-interglacial trends. Using RDA, the direct relationships between the distribution patterns of calcareous dinoflagellates with the above mentioned external variables could be determined. For the studied region and time interval (141-6.7 ka) the calcareous dinoflagellates show enhanced abundances in periods with reduced productivity most probably related to decreased divergence and relatively stratified, oligotrophic oceanic conditions.
Resumo:
Marine diatoms are the primary biostratigraphical and paleoenvironmental tool for interpreting the upper Palaeogene and lower Neogene strata recovered during the second drilling season of the Cape Roberts Project at site CRP-2 in the western Ross Sea, Antarctica. Silicoflagellates, ebridians, and a chrysophyte cyst provide supporting biostratigraphical information. More than 100 dominantly planktic diatom taxa are recognised. Of these, more than 30 are treated informally, pending SEM examination and formal description. Many other taxa are noted only to generic level. Lower Oligocene (c. 31 Ma) through lower Miocene (c. 18.5 Ma) diatoms occur from 28 mbsf down to 565 mbsf. Below this level, to the bottom of the hole at 624.15 mbsf, diatom assemblages are poorly-preserved and many samples are barren. A biostratigraphic zonal framework, consisting of ten diatom zones, is proposed for the Antarctic continental shelf. Ages inferred from the diatom biostratigraphy correspond well with geochronological data from argon dating of volcanic materials and strontium dating of calcareous macrofossils, as well as nannofossil biochronological datums. The biochronostratigraphical record from CRP-2/2A provides an important record of diatom events and mid-Cenozoic environmental changes in the Antarctic neritic zone.
Resumo:
Deep-sea cores recovered at Sites 842 and 843 on Leg 136 of the Ocean Drilling Program have yielded assemblages of Quaternary, Eocene, and Cretaceous radiolarians from the Hawaiian Arch region of the northern equatorial Pacific Ocean. Reddish-brown clays from Hole 842A (0-9.6 mbsf), Hole 842B (0-6.3 mbsf), and Hole 843C (0-4.2 mbsf) contain abundant and diverse assemblages of Quaternary radiolarians consisting of more than 80 species typical of the equatorial Pacific region. Quaternary radiolarians at these sites are assignable to the Quaternary Collosphaera tuberosa Interval Zone and Amphirhopalum ypsilon Interval Zone. The boundary between these zones cannot be determined precisely because of the rarity of zonal markers below surface sediments. Correlations have been made between radiolarian occurrences and magnetostratigraphic events elsewhere in the Pacific Ocean, but similar correlations are difficult at Sites 842 and 843 because of poor subsurface preservation. Chert samples collected from intervals in Cores 842B-10X and 842C-1W have yielded radiolarian ages of lower Cenomanian to Santonian and lower Cenomanian, respectively. Radiolarian assemblages in volcanic sand layers in Sections 6 and 7 of Core 842A-1H (7.5-9.6 mbsf) contain lower and middle Eocene radiolarians admixed with abundant Quaternary faunas. Reworked Eocene radiolarians appear to be restricted to thin layers of volcanic sands within the cores, suggesting deposition by turbidity currents.
Resumo:
The sedimentary succession drilled at Sites 840 and 841 on the Tonga forearc allows the sedimentary evolution of the active margin to be reconstructed since shortly after the initiation of subduction during the mid Eocene. Sedimentation has been dominated by submarine fan deposits, principally volcaniclastic turbidites and mass-flows derived from the volcanic arc. Volcaniclastic sedimentation occurred against a background of pelagic nannofossil sedimentation. A number of upward-fining cycles are recognized and are correlated to regional tectonic events, such as the rifting of the Lau Basin at 5.6 Ma. Episodes of sedimentation dating from 16.0 and 10.0 Ma also correlate well with major falls in eustatic sea level and may be at least partially caused by the resulting enhanced erosion of the arc edifice. The early stages of rifting of the Lau Basin are marked by the formation of a brief hiatus at Site 840 (Horizon A), probably a result of the uplift of the Tonga Platform. Controversy exists as to the degree and timing of the uplift of Site 840 before Lau Basin rifting, with estimates ranging from 2500 to 300 m. Structural information favors a lower value. Breakup of the Tonga Arc during rifting resulted in deposition of dacite-dominated, volcaniclastic mass flows, probably reflecting a maximum in arc volcanism at this time. A pelagic interval at Site 840 suggests that no volcanic arc was present adjacent to the Tonga Platform from 5.0 to 3.0 Ma. This represents the time between separation of the Lau Ridge from the Tonga Platform and the start of activity on the Tofua Arc at 3.0 Ma. The sedimentary successions at both sites provide a record of the arc volcanism despite the reworked nature of the deposits. Probe analyses of volcanic glass grains from Site 840 indicate a consistent low-K tholeiite chemistry from 7.0 Ma to the present, possibly reflecting sediment sourcing from a single volcanic center over long periods of time. Trace and rare-earth-element (REE) analyses of basaltic glass grains indicate that thinning of the arc lithosphere had begun by 7.0 Ma and was the principle cause of a progressive depletion of the high-field-strength (HFSE), REE, and large-ion-lithophile (LILE) elements within the arc magmas before rifting. Magmatic underplating of the Tofua Arc has reversed this trend since that time. Increasing fluid flux from the subducting slab since basin rifting has caused a progressive enrichment in LILEs. Subduction erosion of the underside of the forearc lithosphere has caused continuous subsidence and tilting toward the trench since 37.0 Ma. Enhanced subsidence occurred during rifting of the South Fiji and Lau basins. Collision of the Louisville Ridge with the trench has caused no change in the nature of the sedimentation, but it may have been responsible for up to 300 m of uplift at Site 840.
Resumo:
A new planktic foraminifer transfer function (GSF18) related 5 North Atlantic assemblages to winter and summer sea surface temperature. GSF18, based on recombined and simplified core top census data, preserves most environmental information and reproduces modern North Atlantic conditions with approximately the same accuracy as previous transfer functions, but can be more readily applied to faunal samples ranging in age from Pliocene to Holocene. Transfer function GSF18 has been applied to faunal data from Deep Sea Drilling Project Hole 552A to produce a 2.5 m.y. sea-surface temperature (SST) time series. Estimates show several periods between 2.3 and 4.6 Ma during which mean SST's were both several degrees warmer and several degrees cooler than modern conditions. Between 2.9 and 4.0 Ma SST was generally warmer than modern except for a 250 k.y. interval centered at 3.3 Ma. Maximum SST, with respect to modern conditions, occurred after the cool interval near 3.1 Ma when SST was approximately 3.6° C warmer than present conditions. Comparison of SST estimates with stable isotope data suggest that after peak warming at 3.1 Ma, there was an overall surface water cooling with concomitant build up of global ice volume, culminating in Northern Hemisphere glaciation. This event is also indicated by the presence of ice rafted detritus in 552A sediments at about 2.45 Ma.
Resumo:
The paleoenvironmental conditions through MIS 15-9 at the Mediterranean Ocean Drilling Program (ODP) Site 975 were interpreted by high resolution study of calcareous plankton assemblages compared with available d18O and d13C records and high resolution paleoclimate proxies from the Atlantic Ocean. Sea Surface Temperatures (SSTs) have been estimated from planktonic foraminiferal assemblages using the artificial neural networks method. Calcareous plankton varied dominantly on a glacial-interglacial scale as testified by the SST record, foraminiferal diversity, total coccolith abundance and changes in warm-water calcareous nannofossil taxa. A general increase in foraminiferal diversity and of total coccolith abundance is observed during interglacials. Warmest SSTs are reached during MIS 11, while MIS 12 and MIS 10 represent the coldest intervals of the studied record. During MIS 12, one of the most extreme glacials of the last million years, occurrence of Globorotalia inflata and of neogloboquadrinids indicates a shoaling of the interface between Atlantic inflowing and Mediterranean outflowing waters. Among calcareous nannofossils the distribution of Gephyrocapsa margereli-G. muellerae > 4 µm also supports a reduced Atlantic-Mediterranean exchange during MIS 12. Superimposed on glacial-interglacial variability, six short-terms coolings are recognized during MIS 12 and 10, which appear comparable in their distribution and amplitude to the Heinrich - type events documented in the Atlantic Ocean in the same interval. During these H-type events, N. pachyderma (s) and G. margereli-G. muellerae > 4 µm increase as a response to the enhanced inflow of cold Atlantic water into the Mediterranean via the Strait of Gibraltar. Mediterranean surface water hydrography appears to have been most severely affected at Termination V during the H-type event Ht4, possibly as a response to a large volume of Atlantic meltwater inflow via the Strait of Gibraltar and/or to freshwater/terrigenous input deriving from local mountain glaciers. Three additional SST coolings are recorded through MIS 14-16, but these are not well correlated with Heinrich - type events documented in the Atlantic Ocean in the same interval; during these cooling episodes only the subpolar Turborotalita quinqueloba increases. These results highlight the sensitive response of the Mediterranean basin to millennial-scale climate variations related to Northern Hemisphere ice-sheet instability and support the hypothesis that the tight connection between high latitude climate dynamics and Mediterranean sea surface water features can be traced through the Middle Pleistocene.
Resumo:
Excavations were carried out in a Late Palaeolithic site in the community of Bad Buchau-Kappel between 2003 and 2007. Archaeological investigations covered a total of more than 200 m**2. This site is the product of what likely were multiple occupations that occurred during the Late Glacial on the Federsee shore in this location. The site is situated on a mineral ridge that projected into the former Late Glacial lake Federsee. This beach ridge consists of deposits of fine to coarse gravel and sand and was surrounded by open water, except for a connection to the solid shore on the south. A lagoon lay between the hook-shaped ridge and the shore of the Federsee. This exposed location provided optimal access to the water of the lake. In addition, the small lagoon may have served as a natural harbor for landing boats or canoes. Sedimentological and palynological investigations document the dynamic history of the location between 14,500 and 11,600 years before present (cal BP). Evidence of the deposition of sands, gravels and muds since the Bølling Interstadial is provided by stratigraphic and palynological analyses. The major occupation occurred in the second half of the Younger Dryas period. Most of the finds were located on or in the sediments of the ridge; fewer finds occurred in the surrounding mud, which was also deposited during the Younger Dryas. Direct dates on some bone fragments, however, demonstrate that intermittent sporadic occupations also took place during the two millennia of the Meiendorf, Bølling, and Allerød Interstadials. These bones were reworked during the Younger Dryas and redeposited in the mud. A 14C date from one bone of 11,600 years ago (cal BP) places the Late Palaeolithic occupation of the ridge at the very end of the Younger Dryas, which is in agreement with stratigraphic observations. Stone artifacts, numbering 3,281, comprise the majority of finds from the site. These include typical artifacts of the Late Palaeolithic, such as backed points, short scrapers, and small burins. There are no bipointes or Malaurie-Points, which is in accord with the absolute date of the occupation. A majority of the artifacts are made from a brown chert that is obtainable a few kilometers north of the site in sediments of the Graupensandrinne. Other raw materials include red and green radiolarite that occur in the fluvioglacial gravels of Oberschwaben, as well as quartzite and lydite. The only non-local material present is a few artifacts of tabular chert from the region near Kelheim in Bavaria. A unique find consists of two fragments of a double-barbed harpoon made of red deer antler, which was found in the Younger Dryas mud. It is likely, but not certain, that this find belongs to the same assemblage as the numerous stone artifacts. Although not numerous, animal bones were also found in the excavations. Most of them lay in sediments of the Younger Dryas, but several 14C dates place some of these bones in earlier periods, including the Meiendorf, Bølling, and Allerød Interstadials. These bones were reworked by water and redeposited in mud sediments during the Younger Dryas. As a result, it is difficult to attribute individual bones to particular chronological positions without exact dates. Species that could be identified include wild horse (Equus spec.), moose or elk (Alces alces), red deer (Cervus elaphus), roe deer (Capreolus capreolus), aurochs or bison (Bos spec.), wild boar (Sus scrofa), as well as birds and fish, including pike (Esox Lucius).
Resumo:
Organic petrologic (maceral analysis) and bulk organic-geochemical studies were performed on five sediment cores from the Eurasian continental margin to reconstruct the environmental changes during the last not, vert, similar13 000 yr. The core stratigraphy is based on AMS-14C dating, and correlation by magnetic susceptibility and lithostratigraphic characteristics. Variations in terrigenous, freshwater, and marine organic matter deposition document paleoceanographic and paleoclimatic changes during the transition from the last deglaciation to the Holocene. Glacigenic diamictons deposited in the St. Anna Trough (northern Kara Sea) during the Last Glacial Maximum (LGM) are characterized by reworked terrigenous organic matter. In contrast, the Laptev Sea shelf was not covered by an ice-sheet, but was exposed by the lowered sea level. Increased deposition of marine organic matter (MOM) during deglaciation indicates enhanced surface-water productivity, possibly related to influence of Atlantic waters. The occurrence of freshwater alginite gives evidence for river discharge to the Kara and Laptev Seas after the LGM. At the eastern Laptev Sea slope, the first influence of Atlantic water masses is indicated by an increase in the contents of MOM and dinoflagellate cysts, with Operculodinium centrocarpum prior to not, vert, similar10 000 yr BP. High sedimentation rates in the Kara and the Laptev Seas with the adjacent slope at the beginning of the Holocene are presumably related to increased freshwater and sediment discharge from the Siberian rivers. Evidence for elevated Holocene freshwater discharge to the Laptev Sea has been found between not, vert, similar9.8 and 9 kyr BP, at not, vert, similar5 kyr BP and at not, vert, similar2.5 kyr BP. In the Kara Sea, an increased freshwater signal is obvious at not, vert, similar8.5 kyr BP and at not, vert, similar5 kyr BP. Higher portions of MOM were accumulated in the St. Anna Trough and at the Eurasian continental margin at several intervals during the Holocene. Increased primary productivity during these intervals is explained by seasonally ice-free conditions possibly associated with increased inflow of Atlantic waters.
Resumo:
Size analyses were performed on pelagic sediments from Core 599-3, which exhibited paleontologic and lithologic evidence of reworking. The results show that darker, transported layers above sharp contacts are 0.33 phi coarser than the underlying lighter, in situ layers. The reworking is of unknown origin, but it coincides with periods of enhanced bottom currents and heightened tectonic activity during the latest Miocene.
Resumo:
A total of 21 calcareous nannofossil datums was found in the upper Pliocene and Quaternary sediments recovered from the ocean floor of the North Atlantic during DSDP Leg 94. These datums were correlated to magnetostratigraphy, and ages were estimated by interpolation between magnetic reversals. Calcareous nannofossil assemblages from 549 samples recovered during ODP Leg 117 were studied in order to estimate the age of the sediments of Sites 720, 721, 722, and 731 drilled at the Indus Fan and the Owen Ridge in the Arabian Sea, Indian Ocean. We also showed that the datums above mentioned can be traced into the Indian Ocean. Two new species, namely Helicosphaera omanica and Reticulofenestra ampla, are described.
Resumo:
Planktonic foraminifers from the late Aptian and the Cenomanian-Turonian of Site 585, East Mariana Basin, provide new age data for western Pacific geologic events. The Aptian assemblage dates the volcaniclastic sequence from the bottom of Site 585 and includes several species newly reported from the Pacific Ocean. The Cenomanian-Turonian assemblage constrains the organic-carbon-rich anoxic strata recorded at Site 585 to the Cenomanian-Turonian oceanic anoxic event. Sporadic occurrences of mostly rare, poorly preserved planktonic foraminifers record pulses of sedimentation during the Aptian-Albian, Cenomanian-Turonian, Coniacian-Santonian, and Campanian-Maestrichtian that transported and reworked the pelagic sediments downslope to abyssal depositional environments.