981 resultados para Representative Core Samples
Resumo:
Constraining the history of seawater (234U/238U) is important because this ratio is used to assess the validity of U/Th ages, and because it provides information about the past rate of physical weathering on the continents. This study makes use of U-rich slope sediments from the Bahamas in an attempt to reconstruct seawater (234U/238U) for the last 800 kyr. For the last 360 kyr, U/Th dating of these sediments provides ages and initial (234U/238U) values. Sixty-seven samples, largely from marine highstands, have initial (234U/238U) which scatter somewhat about the modern seawater value (~1.145) but neither this scatter nor the average value increases with age of sample. These data contrast with published coral data and suggest that seawater (234U/238U) has remained within 15? of the modern value for the last 360 kyr. This confirms the rejection of coral U/Th ages where the initial (234U/238U) is significantly different from modern seawater. Data from older highstands, dated with delta18O stratigraphy or by the presence of the Brunhes/Matuyama (B/M) reversal at 780 kyr, allow seawater (234U/238U) to be assessed prior to the range of the 230Th chronometer. Unfortunately, diagenetic scatter in the data between the B/M reversal and 360 kyr is rather large, probably relating to low U concentrations for these samples. But there is no indication of a trend in seawater (234U/238U) with age. High U samples from close to the B/M reversal show less diagenetic scatter and an initial (234U/238U) that averages 1.102. This lower value can be explained by lower seawater (234U/238U) at the time of the B/M reversal, or by progressive loss of 234U from the sediment by alpha-recoil. A simple box model is presented to illustrate the response of seawater (234U/238U) to variations in riverine input, such as might be caused by changes in continental weathering. Comparison of the Bahamas (234U/238U) data with model results indicates that riverine (234U/238U) has not varied by more than 65? for any 100 kyr period during the last 360 kyr. It also indicates that the ratio of physical to chemical weathering on the continents has not been higher than at present for any extended period during the last 800 kyr.
Resumo:
A diatom-based sea-ice concentration (SIC) transfer function is developed using 72 surface samples from west of Greenland and around Iceland, and through comparison with the associated modern SIC. Canonical correspondence analysis on surface sediment diatoms and monthly average of SIC reveals that April SIC is the most important environmental factor controlling the distribution of diatoms in the area, and permits the development of a diatom-based SIC transfer function. The consistency between reconstructed SIC based on diatoms from West Greenland and the instrumental and documentary data during the last ~75 years demonstrates that the diatom-based SIC reconstruction is reliable for studying the palaeoceanography off West Greenland. Relatively warm conditions with strong influence of the Irminger Current (IC) are indicated for the early part of the record (~5000-3860 cal. yr BP), corresponding in time to the latest part of the Holocene Thermal Maximum. The April SIC oscillated around the mean value between 3860 and 1510 cal. yr BP and was above mean afterwards, particularly during the time interval 1510-1120 cal. yr BP and after 650 cal. yr BP, indicating more extensive sea-ice cover in Disko Bugt. A high degree of consistency between the reconstructed April SIC and changes in the diatom species suggests that the sea-ice condition in Disko Bugt is strongly influenced by variations in the relative strength of two components of the West Greenland Current, i.e. the cold East Greenland Current and the relatively warm IC.
Resumo:
The structure and variability of pelagic food webs along the north and northwestern shelf of the Iberian Peninsula were analysed using natural abundance of nitrogen stable isotopes of plankton and pelagic consumers. Plankton composition was mainly studied in size-fractionated samples, but also the isotopic signatures of three copepod species, as representative of primary consumers, were considered. Several fish species were included as planktivorous consumers, with special attention to sardine (Sardina pilchardus). Finally, top pelagic consumers were represented by the common dolphin (Delphinus delphis). The relationship between trophic position and body size implies large variability in the ratio of predator to prey sizes, likely because widespread omnivory and plankton consumption by relatively large predators. Planktivorous species share a common trophic position, suggesting potential competition for food, and low nitrogen isotope enrichment between prey and consumers suggest nutrient limitation and recycling at the base of the food web. Both experimental and field evidences indicate that the muscle of sardine integrates fish diet over seasonal periods and reflects the composition of plankton from large shelf areas. The low mobility of sardines during periods of low population size is consistent with differential isotopic signatures found in shelf zones characterised by upwelling nutrient inputs.
Resumo:
This paper reports results of an investigation of a representative collection of samples recovered by deep-sea drilling from the oceanic basement 10 miles west of the rift valley axis in the crest zone of the Mid- Atlantic Ridge at 15°44'N (Sites 1275B and 1275D). Drilling operations were carried out during Leg 209 of the Drilling Vessel JOIDES Resolution within the framework of the Ocean Drilling Program (ODP). The oceanic crust was penetrated to depth of 108.7 m at Site 1275B and 209 m at Site 1275D. We reconstructed the following sequence of magmatic and metamorphic events resulting in the formation of a typical oceanic core complex of slow-spreading ridges: (1) formation of strongly fractionated (enriched in iron and titanium) tholeiitic magmatic melt parental to gabbroids under investigation in a large magma chamber located in a shallow mantle and operating for a long time under steady-state conditions; (2) transfer of the parental magmatic melt of the gabbroids to the base of the oceanic crust, its interaction with host mantle peridotites, and formation of troctolites and plagioclase peridotites; (3) intrusion of enriched trondhjemite melts as veins and dikes in the early formed plutonic complex, contact recrystallization of the gabbro, and development in the peridotite-gabbro complex of enriched geochemical signatures owing to influence of trondhjemite injections; (4) emplacement of dolerite dikes (transformed to diabases); (5) metamorphism of upper epidoteamphibolite facies with participation of marine fluids; and (6) rapid exhumation of the plutonic complex to the seafloor accompanied by greenschist-facies metamorphism. Distribution patterns of Sr and Nd isotopes and strongly incompatible elements in the rocks suggest contributions from two melt sources to the magmatic evolution of the MAR crest at 15°44'N: a depleted reservoir responsible for formation of the gabbros and diabases and an enriched reservoir, from which trondhjemites (granophyres) were derived.
Resumo:
A high-resolution stratigraphy is essential toward deciphering climate variability in detail and understanding causality arguments of events in earth history. Because the highly dynamic middle to late Eocene provides a suitable testing ground for carbon cycle models for a waning warm world, an accurate time scale is needed to decode climate-driving mechanisms. Here we present new results from ODP Site 1260 (Leg 207) which covers a unique expanded middle Eocene section (magnetochrons C18r to C20r, late Lutetian to early Bartonian) of the tropical western Atlantic including the chron C19r transient hyperthermal event and the Middle Eocene Climate Optimum (MECO). To establish a detailed cyclostratigraphy we acquired a distinctive iron intensity records by XRF scanning Site 1260 cores. We revise the shipboard composite section, establish a cyclostratigraphy and use the exceptional eccentricity modulated precession cycles for orbital tuning. The new astrochronology revises the age of magnetic polarity chrons C19n to C20n, validates the position of very long eccentricity minima at 40.2 and 43.0 Ma in the orbital solutions, and extends the Astronomically Tuned Geological Time Scale back to 44 Ma. For the first time the new data provide clear evidence for an orbital pacing of the chron C19r event and a likely involvement of the very long eccentricity cycle contributing to the evolution of the MECO.
Resumo:
Behavior of rare earth elements (REE) was examined in oceanic phillipsites collected from four horizons of eupelagic clay in the Southwest Basin of the Pacific Ocean. REE concentrations were determined in >50 ?m size fraction phillipsite samples by the ICP-MS method. Composition of separate phillipsite aggregates was studied by electron microprobe and secondary ion mass-spectrometry. Rare earth elements in phillipsite samples are related to admixture of ferrocalcium hydroxophosphates. Analysis of separate phillipsite aggregates reveals low (<0.1-18.1 ppm) REE(III) concentrations. Ce concentration varies between 2.7 and 140 ppm. The correlation analysis shows that REE(III) present in admixture of iron oxyhydroxides in separate phillipsite aggregates. Based on the REE(III) concentration in iron oxyhydroxides we can identify two generations of phillipsite aggregates. Massive rounded aggregates (phillipsite I) are depleted in REE, while pseudorhombic (phillipsite II) aggregates are enriched in REE and marked by a positive Ce anomaly. Oceanic phillipsites do not accumulate REE or inherit the REE signature of volcaniclastic material and oceanic deep water. Hence, REE distribution in phillipsites does not depend on sedimentation rate and composition of host sediments.
Resumo:
The average total organic carbon (TOC) content obtained after Rock-Eval/TOC analysis of 156 sediment samples from the eight sites cored during Leg 135 is 0.05%. Hence, the TOC content of Leg 135 sediments is extremely low. The organic matter that is present in these samples is probably mostly reworked and oxidized material. Ten sediment samples were selected for extraction and analysis by gas chromatography and gas chromatography-mass spectrometry. Very low amounts of extractable hydrocarbons were obtained and some aspects of the biomarker distributions suggest that these hydrocarbons are not representative of the organic matter indigenous to the samples. A sample of an oil seep from Pili, Tongatapu was also analyzed. The seep is a biodegraded, mature oil that shows many characteristics in common with previously published analyses of oil seeps from Tongatapu. Biomarker evidence indicates that its source is a mature, marine carbonate of probable Late Cretaceous-Early Tertiary age. The source rock responsible for the Tongatapu oil seeps remains unknown.
Resumo:
The effects of intrusive thermal stress have been studied on a number of Pleistocene sediment samples obtained from Leg 64 of the DSDP-IPOD program in the Gulf of California. Samples were selected from Sites 477, 478 and 481 where the organic matter was subjected to thermal stress from sill intrusions. For comparison purposes, samples from Sites 474 and 479 were selected as representative of unaltered material. The GC and GC-MS data show that lipids of the thermally unaltered samples were derived from microbial and terrestrial higher-plant detritus. Samples from sill proximities were found to contain thermally-derived distillates and those adjacent to sills contained essentially no lipids. Curie point pyrolysis combined with GC and GC-MS was used to show that kerogens from the unaltered samples reflected their predominantly autochthonous microbial origin. Pyrograms of the altered kerogens were much less complex than the unaltered samples, reflecting the thermal effects. The kerogens adjacent to the sills produce little or no pyrolysis products since these intrusions into unconsolidated, wet sediments resulted in in situ pyrolysis of the organic matter. Examination of the kerogens by ESR showed that spin density and line width pass through a maximum during the course of alteration but ESR g-values show no correlation with maturity. Stable carbon isotope (d13C) values of kerogens decrease by 1-1.5 per mil near the sills at Sites 477 and 481 and the atomic N/C decreases slightly with proximity to a smaller sill at Site 478. Differences in maturation behavior between Site 477 and 481 and Site 478 are attributed to dissimilarities in thermal stress and to chemical and isotopic heterogeneity of Guaymas Basin protokerogen.
Resumo:
Bulk chemical fine-grained sediment compositions from southern Victoria Land glacimarine sediments provide significant constraints on the reconstruction of sediment provenance models in the McMurdo Sound during Late Cenozoic time. High-resolution (~ 1 ka) geochemical data were obtained with a non-destructive AVAATECH XRF Core Scanner (XRF-CS) on the 1285 m long ANDRILL McMurdo Ice Shelf Project (MIS) sediment core AND-1B. This data set is complemented by high-precision chemical analyses (XRF and ICP-OES) on discrete samples. Statistical analyses reveal three geochemical facies which are interpreted to represent the following sources for the sediments recovered in the AND-1B core: 1) local McMurdo Volcanic Group (MVG) rocks, 2) Transantarctic Mountain rocks west of Ross Island (W TAM), and 3) Transantarctic Mountain rocks from more southerly areas (S TAM). Data indicate in combination with other sediment facies analyses (McKay et al., 2009, doi:10.1130/B26540.1) and provenance scenarios (Talarico and Sandroni, 2009, doi:10.1016/j.gloplacha.2009.04.007) that diamictites at the drill site are largely dominated by local sources (MVG) and are interpreted to indicate cold polar conditions with dry-based ice. MVG is interpreted to indicate cold polar condition with dry-based ice. A mixture of MVG and W TAM is interpreted to represent polar conditions and the S TAM facies is interpreted to represent open-marine conditions. Down-core variations in geochemical facies in the AND-1B core are interpreted to represent five major paleoclimate phases over the past 14 Ma. Cold polar conditions with major MVG influence occur below 1045 mbsf and above 120 mbsf. A section of warmer climate conditions with extensive peaks of S TAM influence characterizes the rest of the core, which is interrupted by a section from 525 to 855 mbsf of alternating influences of MVG and W TAM.
Resumo:
Abyssal peridotites are normally thought to be residues of melting of the mid-ocean ridge basalt (MORB) source and are presumably a record of processes affecting the upper mantle. Samples from a single section of abyssal peridotite from the Kane Transform area in the Atlantic Ocean were examined for 190Pt-186Os and 187Re-187Os systematics. They have uniform 186Os/188Os ratios with a mean of 0.1198353 +/- 7, identical to the mean of 0.1198340 +/-12 for Os-Ir alloys and chromitites believed to be representative of the upper mantle. While the Pt/Os ratios of the upper mantle may be affected locally by magmatic processes, these data show that the Pt/Os ratio for the bulk upper mantle has not deviated by more than about +/- 30% from a chondritic Pt/Os ratio over 4.5 billion years. These observations are consistent with the addition of a chondritic late veneer after core separation as the primary control on the highly siderophile element budget of the terrestrial upper mantle. The 187Os/188Os of the samples range from 0.12267 to 0.12760 and correlate well with Pt and Pt/Os, but not Re/Os. These relationships may be explained by variable amounts of partial melting with changing D(Re), reflecting in part garnet in the residue, with a model-dependent melting age between about 600 and 1700 Ma. A model where the correlation between Pt/Os and 187Os/188Os results from multiple ancient melting events, in mantle peridotites that were later juxtaposed by convection, is also consistent with these data. This melting event or events are evidently unrelated to recent melting under mid-ocean ridges, because recent melting would have disturbed the relationship between Pt/Os and 187Os/188Os. Instead, this section of abyssal peridotite may be a block of refractory mantle that remained isolated from the convecting portions of the upper mantle for 600 Ma to >1 Ga. Alternatively, Pt and Os may have been sequestered during more recent melting and possibly melt/rock reaction processes, thereby preserving an ancient melting history. If representative of other abyssal peridotites, then the rocks from this suite with subchondritic 187Os/188Os are not simple residues of recent MORB source melting at ridges, but instead have a more complex history. This suite of variably depleted samples projects to an undepleted present-day Pt/Os of about 2.2 and 187Os/188Os of about 0.128-0.129, consistent with estimates for the primitive upper mantle.
Resumo:
We have studied the effects of slow infiltration of oxygen on microbial communities in refrigerated legacy samples from ocean drilling expeditions. Storage was in heat-sealed, laminated foil bags with a N2 headspace for geomicrobiological studies. Analysis of microbial lipids suggests that Bacteria were barely detectable in situ but increased remarkably during storage. Detailed molecular examination of a methane-rich sediment horizon showed that refrigeration triggered selective growth of ANME-2 archaea and a drastic change in the bacterial community. Subsequent enrichment targeting methanogens yielded exclusively methylotrophs, which were probably selected for by high sulfate levels caused by oxidation of reduced sulfur species. We provide recommendations for sample storage in future ocean drilling expeditions.
Resumo:
Distribution patterns, petrography, whole-rock and mineral chemistry, and shape and fabric data are described for the most representative basement lithologies occurring as clasts (granule to bolder grain-size class) from the 625 m deep CRP-2/2A drillcore. A major change in the distribution pattern of the clast types occurs at c. 310 mbsf., with granitoid-dominated clasts above and mainly dolerite clasts below; moreover, compositional and modal data suggest a further division into seven main detrital assemblages or petrofacies. In spite of this variability, most granitoid pebbles consist of either pink or grey biotite±hornblende monzogranites. Other less common and ubiquitous lithologies include biotite syenogranite, biotite-hornblende granodiorite, tonalite, monzogranitic porphyries (very common below 310 mbsf), microgranite, and subordinately, monzogabbro, Ca-silicate rocks, biotite-clinozoisite schist and biotite orthogneiss (restricted to the pre-Pliocene strata). The ubiquitous occurrence of biotite±hornblende monzogranite pebbles in both the Quaternary-Pliocene and Miocene-Oligocene sections, apparently reflects the dominance of these lithologies in the onshore basement, and particularly in the Cambro-Ordovician Granite Harbour Igneous Complex which forms the most extensive outcrop in southern Victoria Land. The petrographical features of the other CRP-2/2A pebble lithologies are consistent with a supply dominantly from areas of the Transantarctic Mountains facing the CRP-2/2A site, and they thus provide further evidence of a local provenance for the supply of basement clasts to the CRP-2/2A sedimentary strata.