940 resultados para RAFT polymerization
Resumo:
Rapid prototyping (RP) is a common name for several techniques, which read in data from computer-aided design (CAD) drawings and manufacture automatically threedimensional objects layer-by-layer according to the virtual design. The utilization of RP in tissue engineering enables the production of three-dimensional scaffolds with complex geometries and very fine structures. Adding micro- and nanometer details into the scaffolds improves the mechanical properties of the scaffold and ensures better cell adhesion to the scaffold surface. Thus, tissue engineering constructs can be customized according to the data acquired from the medical scans to match the each patient’s individual needs. In addition RP enables the control of the scaffold porosity making it possible to fabricate applications with desired structural integrity. Unfortunately, every RP process has its own unique disadvantages in building tissue engineering scaffolds. Hence, the future research should be focused into the development of RP machines designed specifically for fabrication of tissue engineering scaffolds, although RP methods already can serve as a link between tissue and engineering.
Resumo:
Biomass represents an abundant and relatively low cost carbon resource that can be utilized to produce platform chemicals such as levulinic acid. Current processing technology limits the cost-effective production of levulinic acid in commercial quantities from biomass. The key to improving the yield and effi ciency of levulinic acid production from biomass lies in the ability to optimize and isolate the intermediate products at each step of the reaction pathway and reduce re-polymerization and side reactions. New technologies (including the use of microwave irradiation and ionic liquids) and the development of highly selective catalysts would provide the necessary step change for the optimization of key reactions. A processing environment that allows the use of biphasic systems and/or continuous extraction of products would increase reaction rates, yields and product quality. This review outlines the chemistry of levulinic acid synthesis and discusses current and potential technologies for producing levulinic acid from lignocellulosics.
Resumo:
Hydrogels, which are three-dimensional crosslinked hydrophilic polymers, have been used and studied widely as vehicles for drug delivery due to their good biocompatibility. Traditional methods to load therapeutic proteins into hydrogels have some disadvantages. Biological activity of drugs or proteins can be compromised during polymerization process or the process of loading protein can be really timeconsuming. Therefore, different loading methods have been investigated. Based on the theory of electrophoresis, an electrochemical gradient can be used to transport proteins into hydrogels. Therefore, an electrophoretic method was used to load protein in this study. Chemically and radiation crosslinked polyacrylamide was used to set up the model to load protein electrophoretically into hydrogels. Different methods to prepare the polymers have been studied and have shown the effect of the crosslinker (bisacrylamide) concentration on the protein loading and release behaviour. The mechanism of protein release from the hydrogels was anomalous diffusion (i.e. the process was non-Fickian). The UV-Vis spectra of proteins before and after reduction show that the bioactivities of proteins after release from hydrogel were maintained. Due to the concern of cytotoxicity of residual monomer in polyacrylamide, poly(2-hydroxyethyl- methacrylate) (pHEMA) was used as the second tested material. In order to control the pore size, a polyethylene glycol (PEG) porogen was introduced to the pHEMA. The hydrogel disintegrated after immersion in water indicating that the swelling forces exceeded the strength of the material. In order to understand the cause of the disintegration, several different conditions of crosslinker concentration and preparation method were studied. However, the disintegration of the hydrogel still occurred after immersion in water principally due to osmotic forces. A hydrogel suitable for drug delivery needs to be biocompatible and also robust. Therefore, an approach to improving the mechanical properties of the porogen-containing pHEMA hydrogel by introduction of an inter-penetrating network (IPN) into the hydrogel system has been researched. A double network was formed by the introduction of further HEMA solution into the system by both electrophoresis and slow diffusion. Raman spectroscopy was used to observe the diffusion of HEMA into the hydrogel prior to further crosslinking by ã-irradiation. The protein loading and release behaviour from the hydrogel showing enhanced mechanical property was also studied. Biocompatibility is a very important factor for the biomedical application of hydrogels. Different hydrogels have been studied on both a three-dimensional HSE model and a HSE wound model for their biocompatibilities. They did not show any detrimental effect to the keratinocyte cells. From the results reported above, these hydrogels show good biocompatibility in both models. Due to the advantage of the hydrogels such as the ability to absorb and deliver protein or drugs, they have potential to be used as topical materials for wound healing or other biomedical applications.
Resumo:
A simple and efficient route for the synthesis of cyclic polymer systems is presented. Linear furan protected α-maleimide-ω-cyclopentadienyl functionalized precursors (poly(methyl methacrylate) and poly(tert-butyl acrylate)) were synthesized via atom transfer radical polymerization (ATRP) and subsequent substitution of the bromine end-group with cyclopentadiene. Upon heating at high dilution, deprotection of the dieneophile occurs followed by an intramolecular Diels–Alder reaction yielding a high purity cyclic product.
Resumo:
QUT's Centre for Subtropical Design (CSD) partnered with a major developer to bring together some of Brisbane’s most experienced and creative architects and designers in a two-day intensive design charrette to propose innovative design strategies for naturally-ventilated high rise residential buildings. An inner-urban renewal site in Queensland’s capital city Brisbane gave four multi-disciplinary teams the opportunity to address a raft of issues that developers and consultants will confront more and more in the future in warm humid climates. The quest to release apartment dwellers from dependence on energy-hungry air-conditioning and artificial lighting was central to the design brief for the towers. Mentored by Richard Hassell of WOHA, the creative teams focussed on climate-responsive design principles for passive climate control including orientation, cross-ventilation and outdoor living in order to reduce greenhouse gas emissions and offset occupants’ rising energy costs. This article discusses how outcomes of the charrette take their cue from the city’s subtropical climate and demonstrate how high-density high-rise living can be attractive, affordable and sustainable through positive engagement with the subtropical climate’s natural attributes.
Resumo:
Seventeen year olds who come into contact with the police in Queensland are classified as adults and are not afforded the protections available under the Youth Justice Act 1992 (Qld) (YJA). As with any other adult, their offences are dealt with under a raft of legislative provisions including the Criminal Code 1889 (Qld) (the Code), the Police Powers and Responsibilities Act 2000 (Qld) (PPRA) and the Penalties and Sentences Act 1992 (Qld) (PSA). This article argues that this situation is unfair and contravenes international human rights agreements which Australia has ratified, in particular the United Nations Convention on the Rights of the Child (CROC). Article 1 of that Convention defines a child as a person under the age of 18. The youth offences legislation in Queensland only applies to those who have not yet turned 17. This article examines the effects of this anomaly in Queensland, focusing in particular on the pre-adjudication treatment of ‘17 year old adults’.
Resumo:
This is brief paper written in the "here and now" as the event happened and describes the early morning journey of the author by balsa wood raft to the breeding colony of greater flamingoes (Phoenicopterus ruber) on the island of Isabela in the Galapagos archipelago in 1976. Isabela comprises five volcanoes in a north south alignment. The Lake of the Cemetary is close to the site of a former penal colony which is now the only village on the island. The ethological observations at the bird colony are discussed.
Resumo:
Teachers will be aware of the raft of educational changes introduced recently and also of the associated challenges and opportunities that such educational reforms present. This PETAA Paper commences with an overview of the major educational changes and how they impinge on teachers’ classroom practice in the teaching of English and makes explicit the implications for policy support. This article aims to provide teachers with some insight into how they might respond in their teaching to develop their own assessment and pedagogic practices and in so doing support students to improve in their learning and to achieve higher standards. A group of teachers’ classroom practice, which has applicability to both Upper Primary and Middle School English teaching, is analysed to demonstrate how these teachers have pedagogically incorporated some of the ‘general capabilities’ and a cross-curriculum priority of ‘Aboriginal and Torres Strait Islander histories and cultures’ into their classroom practice.
Resumo:
My interest in producing this paper on Indigenous languages was borne out of conversations with and learnings from community members in the Torres Straits and those connected to the ‘Dream Circle’. Nakata (2003, p. 12) laments the situation whereby ‘teachers are transitionary and take their hard-earned knowledge with them when they leave’. I am thus responding to the call to add to the conversation in a productive albeit culturally loaded way. To re-iterate, I am neither Indigenous nor am I experienced in teaching and learning in these contexts. As problematic as these two points are, I am in many ways typical of the raft of inexperienced white Australian teachers assigned to positions in school contexts where Indigenous students are enrolled or in mainstream contexts with substantial populations of Indigenous students. By penning this article, it is neither my intention to contribute to the silencing of Indigenous educators or Indigenous communities. My intention is to articulate my teacherly reflections as they apply to the topic under discussion. The remainder of this paper is presented in three sections. The next section provides a brief overview of the number of Indigenous people and Indigenous languages in Australia and the role of English as a language of communication. The section which follows draws on theorisations from second/additional language acquisition to overview three different schools of thought about the consequences of English in the lives of Indigenous Australians. The paper concludes by considering the tensions for inexperienced white Australian teachers caught up in the fray.
Real-time measurement of F-Actin remodelling during exocytosis using lifeact-EGFP transgenic animals
Resumo:
F-actin remodelling is essential for a wide variety of cell processes. It is important in exocytosis, where F-actin coats fusing exocytic granules. The purpose of these F-actin coats is unknown. They may be important in stabilizing the fused granules, they may play a contractile role and promote expulsion of granule content and finally may be important in endocytosis. To elucidate these functions of F-actin remodelling requires a reliable method to visualize F-actin dynamics in living cells. The recent development of Lifeact-EGFP transgenic animals offers such an opportunity. Here, we studied the characteristics of exocytosis in pancreatic acinar cells obtained from the Lifeact-EGFP transgenic mice. We show that the time-course of agonist-evoked exocytic events and the kinetics of each single exocytic event are the same for wild type and Lifeact-EGFP transgenic animals. We conclude that Lifeact-EGFP animals are a good model to study of exocytosis and reveal that F-actin coating is dependent on the de novo synthesis of F-actin and that development of actin polymerization occurs simultaneously in all regions of the granule. Our insights using the Lifeact-EGFP mice demonstrate that F-actin coating occurs after granule fusion and is a granule-wide event.
Resumo:
Copoly(2-oxazoline)s, prepared by cationic ring-opening polymerization of 2-(dec-9-enyl)-2-oxazoline with either 2-methyl-2-oxazoline or 2-ethyl-2-oxazoline, have been crosslinked with small dithiol molecules under UV-irradiation to form homogeneous networks. In-situ monitoring of the crosslinking reaction by photo-rheology revealed network formation within minutes. The degree of swelling in water was found to be tunable by the hydrophilicity of the starting macromers and the proportion of alkene side arms. Furthermore, degradable hydrogels have been prepared based on a hydrolytically cleavable dithiol crosslinker.
Resumo:
Expression of caveolin-1 is up-regulated in prostate cancer metastasis and is associated with aggressive recurrence of the disease. Intriguingly, caveolin-1 is also secreted from prostate cancer cell lines and has been identified in secreted prostasomes. Caveolin-1 is the major structural component of the plasma membrane invaginations called caveolae. Co-expression of the coat protein Polymerase I and transcript release factor (PTRF) is required for caveolae formation. We recently found that expression of caveolin-1 in the aggressive prostate cancer cell line PC-3 is not accompanied by PTRF, leading to noncaveolar caveolin-1 lipid rafts. Moreover, ectopic expression of PTRF in PC-3 cells sequesters caveolin-1 into caveolae. Here we quantitatively analyzed the effect of PTRF expression on the PC-3 proteome using stable isotope labeling by amino acids in culture and subcellular proteomics. We show that PTRF reduced the secretion of a subset of proteins including secreted proteases, cytokines, and growth regulatory proteins, partly via a reduction in prostasome secretion. To determine the cellular mechanism accounting for the observed reduction in secreted proteins we analyzed total membrane and the detergent-resistant membrane fractions. Our data show that PTRF expression selectively impaired the recruitment of actin cytoskeletal proteins to the detergent-resistant membrane, which correlated with altered cholesterol distribution in PC-3 cells expressing PTRF. Consistent with this, modulating cellular cholesterol altered the actin cytoskeleton and protein secretion in PC-3 cells. Intriguingly, several proteins that function in ER to Golgi trafficking were reduced by PTRF expression. Taken together, these results suggest that the noncaveolar caveolin-1 found in prostate cancer cells generates a lipid raft microenvironment that accentuates secretion pathways, possibly at the step of ER sorting/exit. Importantly, these effects could be modulated by PTRF expression.