918 resultados para Polyketide Synthase
Resumo:
茉莉酸(JA)以及茉莉酸甲醋(MeJA)统称为茉莉素(jasmonates),是由 亚麻酸起始合成的一类具环戊酮基的广泛存在于植物界的类激素,它们对于植物 的发育和抗逆性等都起着重要的作用。为了进一步的了解茉莉酸的生物合成以及 功能,我们对”冬小麦中的茉莉酸生物合成、低温环境中的作用及对拟南芥开花时 间的影响等方面进行了研究。 为了方便分离茉莉酸诱导的基因,我们构建了一个高质量的小麦茉莉酸诱导 文库。未扩增时滴度为3一4xlo6pfu/ml,平均插入的长度为1.2kb。TaJIP是一个 JA诱导的基因,进一步的Northern分析发现它亦可以被低温诱导表达,这给了 我们一个提示,JA信号系统可能参与了植物对低温反应的过程。当外源施加JA于拟南芥时,无论是春化处理或者没有春化处理,无论是C24 还是Col生态型,开花时间都有所增加,而且进一步的NOrthern实验证明,这 种外源的JA的处理延迟开花的现象是与开花抑制基因FLC表达水平的增加相平 行,与长日促进途径中的主效基因CO的表达水平无关。这种JA处理延迟开花的 现象与FLC表达水平增加相平行的现象,表明了JA有可能是通过作用于FLC, 使它的表达水平增加来延迟开花。 Aos(Allene oxide synthase)是茉莉酸合成的脂氧合酶途径中的第一个关 键酶。我们克隆了小麦中的该基因并作了表达分析。它的开放阅读框(ORF)约 1410 bp,编码的多肤长约470个氨基酸,推测其蛋白分子量为51.9 kDa,pI为 9.39。Southern分析表明其在基因组中的拷贝数为3个。其mRNA表达可被外源 的JA强烈的诱导。处理10小时达到高峰。RNA原位杂交表明,该基因在幼苗 中组织特异表达,主要集中在幼叶,特别是在维管束区域,与大麦中的AOS不 同的是,它还在胚芽鞘和茎尖的维管束区域有强烈的表达信号。原位杂交还显示 La3十并不能阻断JA对它的诱导表达
Resumo:
随着现代工业的发展,重金属污染日趋严重。重金属污染引发的环境和健康问题在许多国家都有报道,我国的重金属污染状况也不容乐观。土壤和水体中的重金属污染可以通过食物链进入人体,对人类健康造成很大的危害,如诱发癌症 和畸胎等。 植物修复是一种利用植物对重金属或有机污染物的超富集能力清除或减低污染的环境生物技术。植物修复的生物学机制的研究为这项技术走向实用化奠定了基础。植物修复近期的进展可能来自于可更有效地富集重金属的植物品种的选择、土壤条件的改善等;但长远看来,植物修复技术的巨大进步将取决于新的可更好地抵抗重金属或降解有机毒物的基因的鉴定和克隆,并通过转基因技术创造一批新的植物品种,如可迅速大量富集重金属的高生物量的用作环境净化的植物,以及可排拒重金属吸收的粮食、蔬菜和水果等作物。 本研究针对砷污染的植物修复机制,以超富集砷的凤尾蕨属植物——蜈蚣草为试材取得了如下进展: 1. 以从砷污染地区采集的蜈蚣草(Pteris vittataL.)为植物材料,利用抑制消减杂交(SSH)分离了经砷诱导处理与其对照间表达有差异的cDNA片段,以期得到与砷富集密切相关的基因。其中筛选到的一个cDNA片段与ABC transporter (ATP-binding cassette transporter)有较高的同源性。通过RACE方法对该基因进行了克隆,并进行了初步的结构和功能分析。结果表明所获得的PvABCTl (Accession No. AY496966)为一全长cDNA,长度为2165 bp,其中开读框架为1791 bp,编码597个氨基酸。该基因所编码的蛋白中含有2个ABC transporter特性结构域,1个ATP-binding cassette和2个ATP/GTP结合位点(P-loop),没有明显的跨膜区。 2. 对蜈蚣草在砷胁迫下PvABCT1基因的表达模式进行了研究。转录水平分析表明PvABCT1的表达受砷的诱导。进一步通过PvABCTl-GFP融合基因在洋葱细胞中的表达进行亚细胞定位,结果显示该基因可能定位于细胞质中。 3. 为了研究所克隆的PvABCT1基因的功能,本研究构建了PvABCT1的酵母表达载体,把该基因转入因ACR3基因缺失而对砷敏感的酵母突变株。酵母功能互补实验表明PvABCT1不仅不能与ACR3基因功能互补,反而使酵母对砷的敏感性增加,同时酵母细胞中的砷含量较未转化的酵母细胞增加。即在转入PvABCT1后,酵母细胞吸收了更多的砷。这暗示该基因与蜈蚣草中砷的高吸收有关。 针对食品重金属污染问题,本研究探讨了减低蔬菜对重金属吸收的方法及其 作用机理,取得了如下进展: 1.研究了钙离子和镧离子对镉离子胁迫下生菜种子萌发和植株生长的影响,结果表明在种子萌发时外施4 mM CaCI2或0.04 mg/L La(N03)3均可提高生菜对重金属镉的抗性。 2.通过检测0.5 mM CdCl2胁迫下生菜植株中的镉含量以及外施钙离子或镧离子后相应的镉含量,发现4 mM CaCl2可以增加镉胁迫下生菜植株中镉的积累;而0.04 mg/L La(N03)3可以降低镉胁迫下生菜植株中镉的积累。 3.对生菜中植物络合素合酶基因进行了克隆,通过RT-PCR分析以及植物络合素( phytochelatins,PCs)的检测,探讨了外施钙离子或镧离子对镉胁迫下生菜植株中植物络合素合酶基因在转录水平的表达量、植物络合素含量以及镉的积累三者之间的关系。结果表明:4 mM CaCl2可以提高镉胁迫下生菜植株中植物络合素合酶基因在转录水平的表达以及植物络合素的含量,增加镉的积累;而0.04 mg/L La(N03)3虽然同样可以提高植物络合素合酶基因在转录水平的表达以及植物络合素的含量,却能降低镉胁迫下生菜植株中镉的积累。这暗示外施钙离子可以促进用于重金属污染环境修复的植物对重金属的吸收,而外施镧离子可以用于降低叶菜类蔬菜中重金属镉的积累。
Resumo:
利用反义技术研究生物代谢途径以及对其生物合成进行调控成为植物次生代谢研究领域内一个重要手段之一,并与新兴的RNAi技术一起成为本领域内重要的研究热点。在植物类异戊二烯代谢途径中存在着羟甲基戊二酰辅酶A还原酶(HMGR)、法呢基焦磷酸合酶(FPS)和鲨烯合酶(SQS)等几种关键的分支酶,他们被认为在异戊二烯类的生物合成中发挥着关键的调节作用。其中,鲨烯合酶处于HMGR和FPS的下游,并与倍半萜合酶等利用共同的前体-法呢基二磷酸(FPP),以FPP起始合成一系列的下游产物。因此,FPP成为类异戊二烯途径中的关键调节点之一。本论文基于此目的,利用反义技术研究了FPP合成鲨烯这一途径受到抑制对其他以FPP为生物合成前体的代谢支路的影响。 利用植物双元转化载体pBI121,将青蒿中鲨烯合酶基因的cDNA(约1.5kb)序列插入到pBI121中,取代原有的GUS序列,构建成植物转化载体pBIASS。以根癌农杆菌为介导,将青蒿鲨烯合酶反义基因序列导入到烟草,整合到其基因组中 ,成功获得转基因植株。对转基因烟草进行分子检测表明,外源鲨烯合酶基因的序列已经稳定整合到烟草基因组中,并对内源的烟草鲨烯合酶基因表达产生影响。转基因烟草中检测到内源鲨烯合酶基因的mRNA的水平降低。对鲨烯合酶下游产物之一的胆固醇的含量分析显示,活性减低的鲨烯合酶使胆固醇的生物合成下降约40%左右。同时,另一条以FPP为共同前体的二萜代谢途径产物之一GA3的含量得到了提高,比对照提高约30%。
Resumo:
利用反义技术研究生物代谢途径以及对其生物合成进行调控成为植物次生代谢研究领域内一个重要手段之一,并与新兴的RNAi技术一起成为本领域内重要的研究热点。在植物类异戊二烯代谢途径中存在着羟甲基戊二酰辅酶A还原酶(HMGR)、法呢基焦磷酸合酶(FPS)和鲨烯合酶(SQS)等几种关键的分支酶,他们被认为在异戊二烯类的生物合成中发挥着关键的调节作用。其中,鲨烯合酶处于HMGR和FPS的下游,并与倍半萜合酶等利用共同的前体-法呢基二磷酸(FPP),以FPP起始合成一系列的下游产物。因此,FPP成为类异戊二烯途径中的关键调节点之一。本论文基于此目的,利用反义技术研究了FPP合成鲨烯这一途径受到抑制对其他以FPP为生物合成前体的代谢支路的影响。 利用植物双元转化载体pBI121,将青蒿中鲨烯合酶基因的cDNA(约1.5kb)序列插入到pBI121中,取代原有的GUS序列,构建成植物转化载体pBIASS。以根癌农杆菌为介导,将青蒿鲨烯合酶反义基因序列导入到烟草,整合到其基因组中 ,成功获得转基因植株。对转基因烟草进行分子检测表明,外源鲨烯合酶基因的序列已经稳定整合到烟草基因组中,并对内源的烟草鲨烯合酶基因表达产生影响。转基因烟草中检测到内源鲨烯合酶基因的mRNA的水平降低。对鲨烯合酶下游产物之一的胆固醇的含量分析显示,活性减低的鲨烯合酶使胆固醇的生物合成下降约40%左右。同时,另一条以FPP为共同前体的二萜代谢途径产物之一GA3的含量得到了提高,比对照提高约30%。
Resumo:
植物络合素(phytochelatins,PCs)是含有γ-Glu-Cys重复结构的小分子多肽,其结构通式为:(γ-Glu-Cys)n-Gly(n=2-11)。植物络合素(PCs)由植物络合素合酶(PCS)催化谷胱甘肽(GSH)聚合而成,能够络合重金属离子而具有解毒功能,这是植物解毒重金属胁迫的重要机制之一。本文克隆了来源于重金属抗性植物绊根草(Cynodon dactylon cv Goldensun)的植物络合素合酶基因,通过基因工程手段使其在烟草中过量表达,得到了一些有望用于植物修复(phytoremediation)的工程植株。同时,在水稻(Oryza sativa)种子中利用RNAi技术抑制植物络合素合酶基因的表达,以降低重金属离子在人类最重要的粮食作物水稻的籽粒中的积累。 1. 通过RACE(Rapid Amplification of cDNA Ends)方法从抗性植物绊根草中克隆了植物络合素合酶基因CdPCS1,其1515 bp的读码框编码一个含505个氨基酸的蛋白质,蛋白质序列分析表明它具有植物络合素合酶的结构特征,同时还具有磷酸化位点和亮氨酸拉链结构。 2. CdPCS1基因可以互补对铜和镉离子敏感的酵母突变株ABDE-1(cup1Δ)中缺失的金属硫蛋白基因CUP1的功能,也可以互补对砷离子敏感的酵母突变体FD236-6A(acr-3Δ)中的离子外排载体基因ARC3的缺失。 3. 将CdPCS1转入烟草,共获得过表达CdPCS1的烟草44个株系,其中融合GFP的株系16个。对T0代的转基因植株的PCs含量以及重金属抗性和吸收能力进行了分析,其中抗性实验表明,在300μmol/L 的Cd2+离子胁迫11天之后,野生型植株的叶片出现斑点状坏死,而两个转基因烟草株系S6和K49的植株没有出现受伤害症状。在100μmol/L的CdSO4处理一周后,转基因植株中的PCs含量比对照有不同程度的提高,最多提高了2.88倍。当用300μmol/L Cd2+处理9天再用600μmol/L Cd2+处理2天后,Cd的积累量比野生型植株增加了2倍多;用50μmol/L As3+处理7天再用100μmol/L As3+处理2天后,转基因植株对As的积累量最多增加了3倍多。说明转入绊根草PC合酶基因的烟草增加了植物络合素的合成,并由此增加了对镉离子的抗性以及对镉离子和砷离子的积累。 4. 对转基因烟草中的CdPCS1进行了亚细胞定位研究。在激光共聚焦显微镜和荧光显微镜下分别用转基因烟草叶片组织和叶肉细胞原生质体观察融合GFP的CdPCS1,结果表明融合蛋白定位于细胞核中。 5. .利用RNAi技术抑制水稻种子中植物络合素合酶基因的表达,共获得39个转基因株系。其中35个株系为种子特异性ZMM1启动子驱动OsPCS1基因的RNAi,其余4个株系由组成型的Ubiquitin启动子驱动。RT-PCR的分析结果表明:一个由ZMM1启动子驱动的RNAi转基因水稻株系的种子中,OsPCS1的mRNA水平比对照中的下降了一半。
Resumo:
青蒿素是从中国传统药用植物青蒿(Artemisia annua L.)中提取的新型抗疟特效药。青蒿素在国际市场上供不应求,而青蒿植株中青蒿素的含量很低,因此如何提高青蒿素的产量成为近年来研究的热点。通过基因工程获得转基因青蒿高产株系是提高青蒿素产量的最有潜力的途径之一。 对不同基因型青蒿进行不同的激素浓度配比的比较研究,得到丛生芽诱导率较高、生根诱导率较高的激素配比,从而建立了青蒿高效再生体系。然后系统地分析了青蒿丛生芽诱导、丛生芽生长、丛生芽生根诱导对Kan的敏感性。对影响根癌农杆菌介导青蒿转化的转化效率的两个主要因素,即农杆菌类型和青蒿基因型,以及其它影响因素,即预培养时间、侵染液的组成、共培养的方式和时间进行比较研究,建立了根癌农杆菌介导的青蒿高效转化体系。本高效转化和再生体系的转基因植株的得率为4%至10%,而且转基因植株再生周期短,再生能力强。 通过基因工程,在青蒿高产株系中过量表达本实验室从青蒿中克隆的FPS基因,结果转基因青蒿中FPS的酶活性是非转基因青蒿的2-3倍;转基因青蒿的青蒿素含量最高可达0.9%(DW),是非转基因青蒿中青蒿素含量的1.34倍。这些结果进一步论证了FPS在青蒿素生物合成代谢中的调控作用。
Resumo:
水母雪莲(Saussurea medusa Maxim)为名贵珍稀中药材,其主要药用成分为类黄酮,尤其是3-脱氧类黄酮。目前关于雪莲的研究主要集中在采用细胞培养生产类黄酮等方面,但对于雪莲类黄酮生物合成的分子机制了解甚少,极大限制了这一珍贵资源的利用。本研究采用水母雪莲红色系愈伤组织及悬浮细胞为材料,构建cDNA文库,从中克隆水母雪莲类黄酮次生代谢中的相关基因并对这些基因进行了深入的生物信息学分析、转基因研究初步确定其功能,以期了解雪莲类黄酮次生代谢的分子机制,为提高类黄酮的合成奠定基础。主要结果如下: 1. 成功地构建了水母雪莲红色系愈伤组织与悬浮细胞cDNA文库,原始文库滴度达到4×106pfu/ml,扩增文库滴度接近1011 pfu/ml,重组率达98%。PCR检测插入片段,均在0.5kb到3kb之间,1kb以上占62%。从文库中检测到了chs、dfr及Myb转录因子SmP,文库覆盖度达到要求且为PCR筛选文库提供了可能。 2. 采用部分简并引物,通过RT-PCR克隆了水母雪莲查尔酮异构酶基因Smchi特异探针,并根据这一探针序列设计特异引物,采用TD-PCR法筛选cDNA文库,获得Smchi cDNA序列,全长831bp,编码一个232氨基酸残基的蛋白。根据cDNA序列克隆了Smchi DNA序列,结果表明Smchi基因无内含子。Smchi cDNA序列与翠菊chi基因高度同源,ORF区域同源性高达84%,但推测氨基酸序列则只有79.3%。Smchi mRNA具有复杂的二级结构。SmCHI具有典型的Chalcone结构域,其二级结构与苜蓿CHI蛋白十分相似,7个α-螺旋与8个延伸链由随机结构联系起来。但其活性中心的第三个关键氨基酸残基N115为M115所取代,这一取代可能导致该蛋白无生物活性,也可能使它具有一般CHI不同的功能。构建Smchi正义、反义真核表达载体,通过农杆菌介导导入烟草,获得转正义、反义Smchi基因的烟草。转基因烟草花色未改变,但叶片总黄酮发生了显著的变化,50%转正义基因烟草总黄酮含量显著提高,最高比对照提高6倍,70%转反义基因烟草总黄酮含量显著下降,最多达85.1%,初步证明Smchi具有功能,并能有效调控烟草类黄酮次生代谢。因此,SmCHI可能是不同于已知CHI的一类新的CHI蛋白,它催化的反应可能与花色素合成无关,其反应机制也可能有所不同。 3. 伴随Smchi的克隆获得了一个黄烷酮3-羟化酶类似基因Smf3h的cDNA,全长1334bp,编码一个343aa的蛋白。根据这一cDNA序列克隆了Smf3h DNA序列,全长1630bp,结果表明该基因由4个外显子和3个内含子组成。Smf3h mRNA具有十分复杂的二级结构。 推测蛋白氨基酸同源性分析表明,SmF3H属于2OG-FeII_Oxy家族,与同一家族的的颠茄H6H的同源性为45%,与拟南芥F3H的同源性为40%,但对SmF3H、典型F3H及典型H6H推测蛋白二级结构、活性中心关键氨基酸残基的位置与相对距离、软件进行功能预测分析,发现SmF3H与F3H更相似。构建Smf3h的正义与反义真核表达载体,通过农杆菌介导导入烟草,但只获得一批转正义基因的烟草,反义基因导致烟草不能再生而未获得转反义基因烟草。转基因烟草花色未改变,叶片总黄酮也与对照相似,初步确认Smf3h与烟草类黄酮生物合成无关,而是一个既不属于f3h也不属于h6h的功能未确定的新基因。 4. 采用与克隆Smchi基因相似的方法,从cDNA文库中克隆了SmP基因cDNA,全长969bp,编码一个256 aa的蛋白质。根据cDNA序列克隆了SmP基因的DNA序列,结果表明,SmP基因无内含子。SmP基因cDNA 一级结构及mRNA二级结构预测分析表明,该基因A+T含量很高(63%),所形成二级结构以A-T配对为主,其稳定性可能较差。SmP推测蛋白序列具有R2R3-Myb转录因子的典型特征,在N-端具有两个Myb DNA-binding Domain,其二级结构与鸡Myb转录因子1A5J十分相似,与其他基因如水稻OsMYB、番茄ThMYB的同源区域主要集中在这一结构域,分别为71.3%和70.8%;C-端富含丝氨酸,与烟草NtMYB、葡萄VlMYB等类黄酮调控因子相似,都呈寡聚体分布,并具有相同的保守磷酸化位点S170与S206。构建SmP基因真核表达载体,通过农杆菌介导导入烟草,获得大量转基因烟草。转基因烟草花色未发生改变,但51%的转基因烟草叶片总黄酮含量都显著提高(0.5-6倍),表明SmP具有促进烟草类黄酮生物合成的功能,但所调控的支路与花色素合成无关。初步试验结果表明,转SmP基因烟草对蚜虫具有很高的抗性,可有效地抑制蚜虫在烟草上的生长,抑制率最高可达92%-100%。这一抗性与烟草中类黄酮的积累可能具有直接的联系,但还需要进一步的试验证明。 5. 与美国俄亥俄州立大学Erich Grotewold 博士实验室合作,完成了微型EST库50个克隆的测序并进行了分析,从中获得了水母雪莲花色素合酶基因SmANS及醛脱氢酶基因SmALDH的特异探针。根据SmANS特异探针设计引物,采用PCR从这50个克隆中筛选获得了SmANS的cDNA序列,全长1229bp,编码一个356aa的蛋白质。SmANS在cDNA水平上与同属的翠菊ANS基因高度同源,但同源区域集中在ORF区域,达到80%,mRNA 预测二级结构十分复杂;推测氨基酸序列与翠菊ANS同源性达到82.9%。SmANS属于2OG-FeII_Oxy家族,在2OG-FeII_Oxy结构域高度保守,与翠菊、甜橙ANS保守结构域同源性达到94%。预测蛋白二级结构以α-螺旋-β-折叠为主,由7个主螺旋和11个主β-折叠及随机结构连接而成,并具有2OG-FeII_Oxy家族活性中心的三个保守的组氨酸残基(His84、His235、His291)和一个天冬氨酸残基(Asp237)。 6. 根据微型EST库中获得的SmALDH特异探针设计引物,采用PCR从这50个克隆中筛选获得了SmALDH基因cDNA 序列,全长1664bp,编码一个491aa的蛋白质。SmALDH基因cDNA具有独特的碱基组成,3/-UTR富含A+T,占该区域碱基总量的80%,5/-UTR的A+T和G+C各占50%,比ORF区域(52%)还低,因此其mRNA二级结构中5/-UTR可以单独形成自身二级结构并且十分稳定,这可能影响基因的表达。这一现象在水稻、玉米等植物中也存在。SmALDH在cDNA水平上在ORF区域与拟南芥、藏红花、水稻等具有较高同源性,分别为64.03%、63.89%、63.72%,但在推测蛋白氨基酸序列水平上同源性反而较低,分别为54.9%、54.3%、54.0%。SmALDH缺少线粒体定位信号,为胞质醛脱氢酶,具有一个Aldedh 保守结构域,还具有与1OF7-H相似的以α-螺旋-β-折叠为主的二级结构,由10个主螺旋和15个主β-折叠及随机结构连接而成。由于ALDH在植物细胞乙醇发酵中具有解除醛类物质毒害的功能,因此SmALDH基因的克隆为改造细胞自身以适应发酵培养条件,解决水母雪莲细胞大规模培养中需氧问题提供了可能。
Resumo:
金属硫蛋白(metallothionein,MT)和植物络合素(phytochelatin,PC)是植物中能够与金属离子结合的两大类多肽。二者均富含Cys,但前者是mRNA的编码产物,后者是酶促反应的产物,植物络合素合酶(PCS)则是合成PC的关键酶之一。目前已发现许多植物同时存在金属硫蛋白基因和植物络合素合酶基因。研究重金属胁迫下这两类基因的表达对了解植物的重金属抗性的分子机制具有重要意义,同时还可以为培育能用于植物修复的品种提供新思路。 本论文从大蒜中克隆了一个type 2 MT基因,命名为AsMT2a,将其在大蒜中的表达模式与大蒜的植物络合素合酶基因(AsPCS1)进行了比较,并对二者的过表达转基因拟南芥的重金属抗性进行研究。其主要结果如下: 1. AsMT2a基因全长525 bp,编码79个氨基酸,其中有14个Cys 残基。 推测的氨基酸序列分析表明其Cys的位置和数目与来自其它植物的type 2 MT蛋白的完全一致。 2. RT-PCR的结果显示,大蒜根部AsPCS1的表达在Cd处理的短期(1 hr)内迅速增强,同时PCs含量也大幅度增加。但AsMT2a的表达在Cd处理10 hr后才有明显的增加。说明AsPCS1可能在植物对重金属的急性解毒方面起主要作用,而AsMT2a则在植物对重金属长久耐性中的离子平衡方面起更大作用。暗示在大蒜暴露于Cd胁迫的不同时期AsPCS1和AsMT2a基因可以互相协调而对重金属胁迫作出反应。此外,在不同胁迫条件下,AsPCS1和AsMT2a的表达模式不同,其中Cd、As和热激可以促进根中AsPCS1的表达和PCs的积累。 3.将AsPCS1和AsMT2a转入对砷和镉敏感的酵母菌株 FD236-6A中,RT-PCR的结果显示这两个基因均可在酵母中稳定表达,对转化子的重金属抗性实验表明这两个基因均可提高转化子对砷和镉的抗性。 4.将AsPCS1和AsMT2a 置于 CaMV 35S启动子下转入拟南芥中,RT-PCR结果表明,这两个基因均可在拟南芥中表达。有趣的是,AsPCS1在拟南芥中存在两个转录本,且二者均具有完整的ORF,其推测的氨基酸序列相差38个氨基酸。说明部分AsPCS1在拟南芥中经过了精确的剪切和拼接过程,但其机制尚不清楚。 5.在Cd 胁迫下,AsPCS1的超表达拟南芥的生长好于野生型植株,主要表现在转基因拟南芥的根较长,根数目较多;但在As胁迫下AsPCS1转基因植株与野生型植株没有明显的差别。与此不同的是将AsMT2a转入拟南芥后,转基因植株的As抗性明显增强,同样表现在根长度和根数目上。进一步将AsPCS1和AsMT2a同时转入拟南芥进行超表达,在Cd胁迫下,转基因植株的生长好于野生型植株,且种子萌发率也较高。 6.Cd和As胁迫下,AsPCS1过表达植株的PCs含量增加,同时Cd和As的积累量也明显增加,其中Cd胁迫下Cd含量增加最多,平均比野生型对照增加4倍;而As胁迫下As含量比野生型对照增加1.2倍。在Cd和As胁迫下,AsMT2a过表达植株的Cd和As积累量与野生型相比分别增加1.4倍和0.8 倍。双价基因AsMT2a +AsPCS1过表达植株的 Cd 积累量是野生型的5.8倍,是AsMT2a过表达植株的2.4 倍,是AsPCS1过表达植株的1.2倍。 在克隆AsMT2a的同时,我们还从大蒜中克隆到了一个金属硫蛋白基因家族的新成员,命名为AsMT2b,并对其功能进行了初步探讨。主要结果如下: 1.AsMT2b 全长520 bp,其开读框架为243 bp,编码80个氨基酸,其中含有15个Cys 残基。对推测的氨基酸序列分析表明AsMT2b的N端和C端domain内,Cys的数目和排列方式与其它type 2 MT蛋白明显不同。 其N 端domain内的结构为CXXC——CXC——CXC——CXCC,C端domain 内的结构为CXXC——CXC——CXC。暗示AsMT2b 可能具有与其它MT不同的生物学功能。 2.在较低浓度Cd(200 µM)胁迫下,AsMT2b的表达量随着处理时间(24 hr内)的延长而降低,但随着处理浓度的升高(500 µM)和处理时间延长(48 hr),其表达量又逐步增强,说明AsMT2b可能在胁迫强度增大到一定值时方起作用。 3. 将AsMT2b转入对Cd和As敏感的酵母菌株FD236-6A中,发现AsMT2b对酵母As抗性的提高贡献不大,但可明显提高酵母对Cd的抗性。 4.对AsMT2b的超表达拟南芥的重金属抗性分析表明,与野生型植株比较,转基因植株具有较强的Cd抗性,表现在Cd胁迫下,种子的萌发率较高,根较长,侧根数较多。但在As胁迫下,转基因植株的生长和野生型没有明显差异。可以看出,转AsMT2b的拟南芥对重金属的抗性不同于转AsMT2a的植株,前者的抗Cd性较强,而后者的抗As性较强。 5. Cd胁迫下,AsMT2b过表达拟南芥的Cd含量明显增加,平均比野生型对照植株增加70%,但各个株系的增加幅度不一致。 另外,我们还对CdCl2胁迫下,大蒜幼苗中镉的积累及氧化胁迫和抗氧化能力的变化进行了研究。结果表明在CdCl2 胁迫下,大多数Cd在根部积累,而只有少量的Cd积累于叶片中。5 mM 和10 mM CdCl2 抑制SOD和CAT的活性,但随着处理时间的延长,二者的活性回复到对照水平或高于对照。在CdCl2胁迫下,POD的活性明显增强,同时脂质过氧化产物积累。这些结果说明镉胁迫下,植物细胞中氧化胁迫加剧,而抗氧化酶活性的增强是植物对次生氧化胁迫的一种适应策略。 综上所述,在重金属胁迫下, AsPCS1和AsMT2a之间及AsMT2a和AsMT2b之间均表现出明显的协调反应。这种协调反应可能是植物维持细胞内离子稳态的机制之一。而重金属胁迫下,过表达AsPCS1,AsMT2a或AsPCS1+AsMT2a的拟南芥体内的重金属含量明显增加,表明这些基因可望用于重金属污染土壤的植物修复中。
Resumo:
青蒿素是从中药青蒿中提取的新型抗疟药物,然而,青蒿素在青蒿中的含量非常低。近年来,随着青蒿素生物合成途径相关酶基因的克隆,基因工程成为提高青蒿素含量的有效途径之一。在对青蒿进行遗传转化过程中,高效稳定的丛生芽诱导体系是青蒿转化成功的关键。然而,随着继代次数的增多,青蒿丛生芽诱导能力存在退化现象。本文首先研究了滤纸对青蒿丛生芽诱导的影响和在遗传转化中的应用,进而研究了反义鲨烯合酶基因表达对青蒿素生物合成的影响。主要结果如下: 研究了在丛生芽诱导培养基上加铺滤纸对青蒿丛生芽诱导的影响,结果发现,加铺滤纸后青蒿丛生芽诱导率显著提高,丛生芽诱导率能够达到97%左右。在此高效丛生芽诱导体系的基础上,我们进一步探讨了滤纸在青蒿遗传转化中的应用。结果表明,在筛选培养基上加铺一层滤纸,青蒿的抗性丛生芽诱导率能够达到59.7%,其中在12.5%的抗性丛生芽中能够得到抗性生根植株,生根植株PCR检测均为阳性,在部分PCR检测阳性的植株中检测到了GUS的稳定表达。 利用上述改进的青蒿遗传转化体系,我们得到了反义鲨烯合酶基因的青蒿转化植株。PCR检测和Southern杂交检测结果证明了反义鲨烯合酶基因已经整合到青蒿基因组中。RT-PCR检测发现,在转基因株系ASQ3和ASQ5中鲨烯合酶基因在mRNA水平上得到部分抑制,鲨烯含量比对照降低了20%左右;青蒿素的含量分别提高了23.2%和21.5%,结果表明抑制鲨烯合酶表达能够有效促进青蒿中青蒿素的生物合成。
Resumo:
水母雪莲(Saussurea medusa Maxim)为菊科凤毛菊属植物,是名贵中药材。为解决雪莲资源匮乏,我们实验室通过植物组织培养技术,成功的建立起水母雪莲细胞和毛状根体系。通过对它的药理实验及化学成分分析,主要成分为黄酮类物质和紫丁香甙单体。为了进一步提高这些物质在水母雪莲培养物中的含量,本文开展通过添加外源诱导子手段来调控水母雪莲次生代谢合成途径。 利用水杨酸(SA)和酵母提取物(YE)作为外源诱导子,添加到水母雪莲细胞系和毛状根系培养基中,研究诱导子不同添加浓度和不同添加时间对水母莲细胞系和毛状根系的生长及次生物质合成的诱导效应。实验结果发现:对于细胞系来说,SA比YE的诱导效果要好,低浓度SA处理时,不仅能促进细胞的生长,还能提高水母雪莲细胞中黄酮化合物和紫丁香甙的含量。其中,在细胞生长周期的第6天添加终浓度为20 μM的SA,诱导效果表现最佳。在此条件下,细胞内总黄酮产量达到532 mg/l,紫丁香甙为630 mg/l,分别比对照提高了130%,和150%。对于毛状根体系来说,SA和YE生长早期添加会抑制毛状根生长。总体上,YE的诱导效果比SA明显。在第10天添加终浓度为40 μg/ml的YE,总黄酮达到741 mg/l,紫丁香甙达到303 mg/l,分别是对照的2.8和2.5倍。 同时研究了20 μM和100 μM SA诱导下,黄酮合成途径中相关酶的变化。发现,低浓度的SA能在短时间内诱导CHS和CHI表达,24h后PAL酶活性升高到对照的7.5倍,而48 h总黄酮的含量检测到最高值。因此可以初步断定,SA诱导苯基苯丙烷类物质的积累与CHS和CHI表达,PAL酶活性提高有关。 另外,从水母雪莲cDNA中克隆到雪莲黄酮合成途径的第一个关键酶—查耳酮合成酶基因(SmCHS)全长cDNA。此cDNA序列全长为1313bp,其编码的蛋白为389个氨基酸,推测的氨基酸序列与许多物种都高度同源,同源性高达88%。生物信息学分析,SmCHS具有CHS-like保守结构域,其二级结构与苜蓿的CHS十分相似,且苜蓿中的CHS酶活性中心的关键氨基酸位点在SmCHS也一致对应相同,没有突变。因此可以初步推测这个SmCHS应该具有查耳酮合成酶功能。并进一步构建SmCHS植物表达载体,转化拟南芥chs突变体,通过功能互补分析研究此基因的功能。由于时间关系这部分研究尚在进行中。
Resumo:
根质膜具有重要的生物学功能,它参与了根响应脱落酸(ABA)的一系列活动。尽管已经有很多有关ABA影响根的生长和发育的报道,但是在蛋白质组水平上研究参与ABA信号转导及相关活动的质膜蛋白质的报道还未见到。我们期望利用蛋白质组学技术平台研究外源ABA胁迫下水稻根质膜与ABA功能相关的蛋白质组的变化。 本论文通过双向电泳(2DE)结合质谱(MALDI-TOF MS 和 MALDI-TOF/TOF MS)分析的方法鉴定了102个质膜相关蛋白质。这些蛋白质功能涉及到跨膜运输(16.2%)、胁迫反应(14.3%)、物质运输(4.8%)、细胞骨架动态变化(5.7%)、细胞壁重建(3.8%)、碳代谢和能量循环(13.3%)、蛋白质代谢(14.3%)、信号转导(18.1%)和其他功能的蛋白质(4.8%),以及未知功能的蛋白质(2.9%)。其中大约30%的蛋白质以同工型的形式存在。在这些鉴定结果中,有10个斑点(代表10种蛋白质)已被报道为质膜特异的蛋白质;68个蛋白质斑点(代表58种蛋白质)是质膜相关蛋白质。其余54个蛋白质斑点(代表42种蛋白质)是首次在水稻根的质膜囊泡中被鉴定出来。 在ABA处理条件下,我们在2DE胶上发现了15个响应ABA调节的蛋白质斑点。9个上调的蛋白质斑点分别代表以下9种蛋白质:vacuolar proton-ATPase A subunit, vacuolar ATPase B subunit、patatin、 Salt-stress root protein RS1、谷氨酰氨合成酶(Glutamine synthetase,GS)、OSR40c1、H+-exporting ATPase (vacuolar ATPase E subunit)、甘油醛-3-磷酸脱氢酶I型(glyceraldehyde-3- phosphate dehydrogenase, type I,GADPH)和醛缩酶C-1(aldolase C-1)。6个下调的蛋白质斑点分别代表4种蛋白质:endosperm lumenal binding protein、remorin protein、富含脯氨酸蛋白质(glycine-rich protein,GRP)和蔗糖合成酶(sucrose synthase, SuSy)。其中,OSR40c1和endosperm lumenal binding protein与蛋白质合成相关,从它们与ABA的关系中可以看出,ABA可能抑制了细胞的蛋白质合成。而vacuolar proton-ATPase A subunit、vacuolar ATPase B subunit和 H+-exporting ATPase参与了细胞质pH的调控,ABA致使了细胞质pH的上升。甘油醛-3-磷酸脱氢酶I型、醛缩酶C-1和蔗糖合酶参与了细胞壁的生长发育,ABA的作用可能导致了细胞壁生长发育的延迟。ABA促使Patatin上升,其作用可能与质膜膜脂的降解有关。而ABA的刺激也使谷氨酰氨合成酶的表达显著上升,谷氨酰氨合成酶可以去除细胞内有害的游离NH+4。同时还有未知功能的富含脯氨酸蛋白质(glycine-rich protein,GRP)同样受到ABA的诱导,但具体的功能及其与ABA的关系还要进一步的实验证据。
Resumo:
从中国传统药用植物青蒿(Artemisia annua L.)中提取的青蒿素及其半合成衍生物如蒿甲醚等是一类新型的抗疟特效药,特别是对抗氯喹的恶性疟疾和脑型疟疾有很好的疗效。由于青蒿素在植物中的含量极低,使得其价格很高,特别是对于亚非拉等第三世界国家来说。因此如何提高青蒿素的产量成为近年来研究的热点。各种传统的育种、生理生化手段和细胞培养技术均未取得较好的结果,因此,利用植物基因工程技术提高青蒿素产量已成为研究的重点之一。 本论文围绕青蒿素的生物合成途径开展了以下的工作: 一、中药青蒿紫穗槐二烯合酶的大肠杆菌表达、纯化与功能鉴定 利用RT-PCR方法,从中药青蒿高产株系001中克隆到的中药青蒿紫穗槐二烯合酶(ADS) cDNA, 其推测编码蛋白与前人报道的有两个位点的突变。将其开放阅读框插入到原核表达载体pET30a(+)的BamHⅠ和XhoⅠ酶切位点之间,构建N端携带有HIS6表达标签的紫穗槐二烯合酶重组表达载体pETADS。将pETADS转入大肠杆菌BL21(DE3), IPTG (Isopropyl-beta -D-thiogalactoside)诱导重组紫穗槐二烯合酶的表达。表达产物经镍琼脂糖柱纯化。纯化蛋白加入酶促反应体系(含FPP),GC-MS分析酶促反应体系的正己烷萃取物,结果显示重组紫穗槐二烯合酶可以催化FPP向紫穗槐二烯的转化。体外酶促动力学分析表明,两个位点的氨基酸突变,并没有影响到青蒿紫穗槐二烯合酶的催化活性。基因组DNA杂交表明,紫穗槐二烯合酶基因在001株系基因组中至少有4个拷贝。 二、中药青蒿鲨烯合酶的大肠杆菌表达、纯化与功能鉴定 将经RACE方法克隆到的中药青蒿鲨烯合酶cDNA(AF302464) 开放阅读框的3'末端截短99 bp,插入到原核表达载体pET30a(+)的NcoⅠ和BamHⅠ酶切位点之间,构建N端和C端均携带有HIS6表达标签的鲨烯合酶重组表达载体pETSSA。将pETSSA转入大肠杆菌BL21(DE3), IPTG (Isopropyl-beta-D-thio galactoside)诱导重组鲨烯合酶的表达。表达产物经镍琼脂糖柱纯化。纯化蛋白加入酶促反应体系(含FPP和NADPH),GC-MS分析酶促反应体系的正己烷萃取物,结果显示重组鲨烯合酶可以催化FPP向鲨烯的转化。青蒿鲨烯合酶的功能鉴定,为进一步利用反义或RNAi技术限制甾类生物合成,从而提高青蒿中的青蒿素含量提供了基础。 三、中药青蒿法呢醇合酶原核表达、纯化与功能鉴定 将经RACE方法克隆到的中药青蒿倍半萜合酶cDNA ( AF304444) 开放阅读框插入到原核表达载体pET30a(+)的NcoⅠ和BamHⅠ酶切位点之间,构建N端和C端均携带有HIS6表达标签的重组表达载体pET30SESQ。将pET30SESQ转入大肠杆菌BL21(DE3), IPTG (Isopropyl-beta-D-thioga lactoside)诱导蛋白表达,表达产物经镍琼脂糖柱纯化。纯化蛋白加入酶促反应体系(FPP),GC-MS分析酶促反应体系的正己烷萃取物,结果显示此重组酶可以催化FPP向法呢醇的转化。 四、中药青蒿FPS、ADS双功能酶基因的构建、表达与功能鉴定 将青蒿素生物合成途径中催化两步连续反应的酶:法呢基焦磷酸合酶和紫穗槐二烯合酶的基因进行融合,经大肠杆菌表达后鉴定融合蛋白的功能,结果表明融合蛋白具有了双功能酶活性。进一步将融合酶基因转入酿酒酵母中,发酵后检测紫穗槐二烯的含量,并与同时转入法呢基焦磷酸合酶和紫穗槐二烯合酶单个基因的酵母、单独转入紫穗槐二烯合酶基因的酵母进行了比较,结果表明,转入双功能酶的酵母发酵获得的紫穗槐二烯含量要比两个对照酵母高,这表明,获得的双功能酶的催化效率要比两个单独酶的催化效率高。 五、过量表达青蒿紫穗槐二烯合酶对青蒿中青蒿素及其前体物含量的影响 利用根癌农杆菌介导,将青蒿紫穗槐二烯合酶转入青蒿株系001,分子检测证明,紫穗槐二烯合酶整合到了青蒿基因组中并在mRNA水平得到了高效表达。部分转基因青蒿的青蒿素含量有明显增加,最多的比001株系提高了41%。青蒿酸和二氢青蒿酸含量测定表明,转基因青蒿株系的青蒿酸和二氢青蒿酸含量最多的比对照分别提高了47%和79%。这些结果表明,紫穗槐二烯合成在青蒿素生物合成途径中是一个限速步骤,同时,也显示青蒿酸或二氢青蒿酸的进一步转化也可能是青蒿素生物合成中下游的限速步骤。
Resumo:
水母雪莲(Saussurea medusa Maxim.)为多年生菊科植物,是我国珍稀药用资源。所含的主要生物活性成分是黄酮类物质,具有抗炎、镇痛、免疫抑制及抗氧化等功效。但由于水母雪莲生长环境特殊,生长缓慢,人工引种困难;加上长期掠夺性采挖,造成其野生药用资源短缺,已经不能满足市场的需求。近年来,世界上掀起了植物药开发的热潮,植物药以其天然低毒的特点倍受关注,而黄酮类化合物更是以其广谱的药理作用引人瞩目。 黄酮类化合物的合成代谢途径在植物界进化过程中很保守,黄酮类生物合成途径中的相关酶也已得到确证并进行了系统的研究。二氢黄酮醇-4-还原酶(Dihydroflavonol-4-reductase, DFR)是一个处于花色素或者原花色素合成途径中的关键酶,它与黄酮合成途径中的黄酮醇合成酶(flavonol synthase)竞争底物。本研究以水母雪莲为研究对象,根据近缘物种DFR基因的保守核苷酸序列设计兼并引物,通过PCR技术,从已经建立的水母雪莲红色愈伤组织cDNA文库中筛选到一个编码该酶的cDNA序列,该序列全长1166个碱基对。根据生物信息学分析,此cDNA编码342个氨基酸;Blastp分析结果显示,该氨基酸序列与同科植物翠菊(Callistephus chinensis)的相似性最高,达87%;SWISSMODEL软件预测其蛋白的三级结构与葡萄(Vitis vinifera)的十分相似,活性中心的关键氨基酸残基也完全一致。据此可以断定,我们所得到的cDNA为编码二氢黄酮醇还原酶的基因,并命名为水母雪莲二氢黄酮醇还原酶基因(SmDFR)。为了得到SmDFR的DNA序列,我们又设计特异引物,从水母雪莲的基因组中扩增出了由1871个碱基对组成的DNA序列,该序列包含五个内含子和六个外显子。 为了提高水母雪莲和大苞雪莲中黄酮类物质的含量,我们构建了SmDFR的反义植物表达载体,利用根癌农杆菌介导进行基因转化。通过改变影响农杆菌转化的实验条件包括外植体来源、农杆菌菌株、细菌浓度、外植体预培养时间、侵染时间和乙酰丁香酮的浓度进行转基因试验,目前尚未得到转基因植株。另外,我们构建了SmDFR正义植物表达载体,通过对拟南芥(Arabidopsis thaliana) DFR基因突变体和矮牵牛(Petunia hybrida)进行基因转化,来验证SmDFR的功能;目前,此实验尚在进行之中。
Resumo:
植物耐受和积累重金属的细胞学基础是植物细胞内存在一些能够络合和区隔化金属离子的机制。细胞中络合重金属离子最重要的小肽分子是谷胱甘肽(GSH)和植物络合素(PCs),而YCFⅠ基因编码的ABC-type 液泡膜转运蛋白负责将重金属离子及其与上述小肽形成的复合物转运进入细胞液泡中,即将重金属离子区隔化。植物细胞中合成GSH 和PCs 的关键酶分别是γ-谷氨酰氨半胱氨酸合成酶(GSHⅠ)和植物络合素合酶(PCS),他们的编码基因分别为GSHⅠ 和PCS 。此外定位于细胞质中的小囊泡上且对二价阳离子的吸收和转运有重要作用的SMF2 蛋白可能也参与重金属离子的区隔化过程。 为了改良植物使之能够应用于清除土壤中的重金属污染,本研究基于植物耐受和积累重金属的细胞学机制,分别将酿酒酵母来源的GSHⅠ、YCFⅠ和SMF2 基因,以及GSHⅠ、YCFⅠ基因分别与镉抗性植物大蒜来源的AsPCSⅠ 基因构建为不同的基因组合表达载体,转化模式植物拟南芥。对不同组合转基因拟南芥的功能分析表明: 1、酵母来源的基因GHSⅠ、YCFⅠ分别在拟南芥中异源超表达可以在一定程度上提高转基因拟南芥耐受、积累重金属的能力;其中GSHⅠ基因在拟南芥超表达可以提高转基因拟南芥合成GSH 的能力,转基因拟南芥细胞中GSH 浓度比野生型增加。 2、将GSHⅠ基因和来自大蒜的AsPCSⅠ基因同时在拟南芥中超表达能够显著提高转基因拟南芥耐受和积累重金属的能力,且积累和耐受能力显著高于分别转GSHⅠ或AsPCSⅠ的单价转基因株系;将YCFⅠ基因和AsPCSⅠ基因同时在拟南芥中超表达也能够显著提高转基因拟南芥耐受和积累重金属的能力,且积累和耐受能力显著高于分别转YCFⅠ或AsPCSⅠ的单价转基因株系。两种双价转基因株系GSHⅠ+AsPCSⅠ和YCFⅠ+AsPCSⅠ在积累和耐受不同重金属胁迫方面没有明显差别。 3、将SMF2 基因在拟南芥中异源表达,研究了植物中囊泡转运是否参与了重金属离子的吸收和区隔化过程。研究结果表明:超表达SMF2 基因的拟南芥尽管耐受重金属胁迫的能力与野生型没有明显差异,但其积累重金属的能力显著提高。这为证明植物中小囊泡转运参与重金属转运提供了间接证据。 综上所述,同时将多个参与植物对重金属络合、转运和区隔化作用的关键基因在转基因植物中表达可以提高植物耐受和积累重金属的能力,是培育可用于植物修复的新型工程植物的值得探索的途径。本论文所设计和构建的双价基因组合及其对目标植物的转化,在环境重金属污染的清除中有潜在的应用价值。
Resumo:
青蒿素是存在于中药青蒿(Artemisia annua L.)中的一种含有过氧桥的倍半萜内酯化合物,是中国科学家研发出的当今最有潜力的抗疟药剂,较传统抗疟药很少或无毒副作用,因此青蒿素的生产备受人们关注。目前,青蒿素的生产主要以植物提取为主,但由于青蒿植株中青蒿素的含量很低(约占干重的0.01%~0.8%),从而导致青蒿素价格昂贵,使许多贫困地区的疟疾患者无法得到医治,故提高青蒿植株中青蒿素的含量或扩大青蒿素的来源,降低生产青蒿素的成本具有重要的意义。 本论文基于扩大青蒿素的来源和提高青蒿植株中青蒿素含量的目的,开展了以下两方面的工作: 一、紫穗槐二烯在烟草中组合生物合成的研究 紫穗槐二烯合酶(amorpha-4,11-diene synthase,ADS)是青蒿素生物合成的关键酶之一,为了能在烟草中合成青蒿素的前体,本研究将青蒿的紫穗槐二烯合酶基因置于CaMV 35S启动子控制下,通过根癌农杆菌介导转入烟草(Nicotiana tobacum L.),并获得了转ADS基因烟草植株。经PCR及Southern杂交分析表明,ADS基因已经整合到转基因烟草基因组中;RT-PCR及对转基因烟草中ADS酶活性和产物中紫穗槐二烯和植物甾醇的测定分析,进一步证明整合的ADS基因在转录、翻译水平上均已经表达。上述结果表明,利用基因工程将青蒿素生物合成途径的关键酶基因导入植物,转基因植物中能够合成青蒿素的前体,这一研究结果为利用转基因植物生产青蒿素或其前体奠定了基础。 二、青蒿鲨烯合酶双链干涉基因对烟草的遗传转化研究 鲨烯合酶(squalene synthase, SQS)是甾醇类生物合成分支途径的关键酶之一,利用RNA干扰技术(RNA interference,RNAi)抑制目标基因表达的技术已日趋成熟。本文根据植物中hpRNA(hairpin RNA)的原理,在与烟草SQS同源性高达80%的青蒿ASQS序列的5/端保守区选择622 bp作为构建RNAi的序列,借助中间克隆载体,经过三次亚克隆,最后形成含ASQS-RNAi表达盒的双元表达载体pART27-ASQS,并转入农杆菌EHA105。采用农杆菌介导的烟草叶盘转化法,共获得了12棵转基因植株。转基因植株经过PCR和PCR-Southern blotting 检测,证实外源ASQS基因已经导入烟草中,并已经成功整合到烟草基因组中;通过RT-PCR分析说明,转基因烟草中SQS基因的表达已被成功抑制,部分转基因植株中内源SQS的干扰效果高达90%以上。对SQS的直接产物鲨烯和最终产物植物甾醇的检测显示,转基因烟草的植物甾醇和鲨烯的含量明显低于对照。本实验的结果为下一步将此RNA干扰载体导入青蒿,抑制青蒿中ASQS基因的表达,从而提高青蒿素的含量提供了可能。