993 resultados para Physical quantities
Resumo:
Grape drying is a slow and energy intensive process because the waxy peel has low permeability to moisture. Therefore, peel chemical and physical pretreatments are considered before drying in order to facilitate water diffusion. However, they cause heterogeneity in the waxes removal and problems during shelf-life. In this paper an alternative abrasive pretreatment of grape peel, for enhancing the drying rate and preserving the samples, was applied to Red Globe grapes. Convective drying experiments were carried out at 40-70 Centigrade and at 2.3 m/s air velocity. The effect of wax abrasive pretreatment on the drying kinetics and quality parameters of raisins was investigated. The results were compared with those of samples pretreated by dipping in alkaline ethyl oleate solution and untreated grapes. All the dried samples are darker than fresh one and shrunked. The samples pretreated by peel abrasion and dried at 50 centigrade showed the lowest color changes, less shrinkage and the best rehydration capacity. The drying kinetics and shrinkage curves were also analyzed using some commonly available empirical models.
Resumo:
This paper reports and discusses findings from a recent study which explored the science enrolment decisions of high achieving, or ‘science proficient’ secondary level students in Australia (Lyons 2003). The research was prompted by the increasing reluctance of such students to enrol in postcompulsory science courses, particularly in physics and chemistry. The study investigated the influences on students’ deliberations about taking a range of science courses. However, this report confines itself to decisions about enrolling in the physical sciences. The paper summarises the students’ experiences and conceptions of school science, as well as the characteristics of their ‘family worlds’ found to be influential in their decisions1. The paper discusses the important roles of cultural and social capital in these decisions, and concludes that enrolment in physical science courses was associated with congruence between the students’ conceptions of school science, and characteristics of their family backgrounds.
Resumo:
Simultaneous and collocated measurements of total and hemispherical backscattering coefficients (σ and β, respectively) at three wavelengths, mass size distributions, and columnar spectral aerosol optical depth (AOD) were made onboard an extensive cruise experiment covering, for the first time, the entire Bay of Bengal (BoB) and northern Indian Ocean. The results are synthesized to understand the optical properties of aerosols in the marine atmospheric boundary layer and their dependence on the size distribution. The observations revealed distinct spatial and spectral variations of all the aerosol parameters over the BoB and the presence of strong latitudinal gradients. The size distributions varied spatially, with the majority of accumulation modes decreasing from north to south. The scattering coefficient decreased from very high values (resembling those reported for continental/urban locations) in the northern BoB to very low values seen over near-pristine environments in the southeastern BoB. The average mass scattering efficiency of BoB aerosols was found to be 2.66 ± 0.1 m2 g−1 at 550 nm. The spectral dependence of columnar AOD deviated significantly from that of the scattering coefficients in the northern BoB, implying vertical heterogeneity in the aerosol type in that region. However, a more homogeneous scenario was observed in the southern BoB. Simultaneous lidar and in situ measurements onboard an aircraft over the ocean revealed the presence of elevated aerosol layers of enhanced extinction at altitudes of 1 to 3 km with an offshore extent of a few hundred kilometers. Back-trajectory analyses showed these layers to be associated with advection from west Asia and western India. The large spatial variations and vertical heterogeneity in aerosol properties, revealed by the present study, need to be included in the regional radiative forcing over the Bay of Bengal.
Resumo:
Sulphuryl chlorofluoride has no observable reaction with metals and metal oxides at room temperature. Metals like copper, silver, iron, and zinc react with the chlorofluoride in the temperature range 200–400°C. Metal chlorides, metal fluorides and sulphur dioxide are the main products of these reactions. With the corresponding metal oxides, on the other hand, the respective metal sulphates are formed in addition to the metal chlorides and fluorides. In the case of lead and lead oxide, lead chlorofluoride is formed instead of lead chloride and lead fluoride. Sulphuryl fluoride is formed in small quantities in all these reactions by the decomposition of the chlorofluoride. Glass is not attacked by sulphuryl chlorofluoride below 500°C.
Resumo:
The project examined coastal and physical oceanographic influences on the catch rates of coral trout (Plectropomus leopardus) and saucer scallops (Amusium balloti) in Queensland. The research was undertaken to explain variation observed in the catches, and to improve quantitative assessment of the stocks and management advice. 3.1 OBJECTIVES 1. Review recent advances in the study of physical oceanographic influences on fisheries catch data, and describe the major physical oceanographic features that are likely to influence Queensland reef fish and saucer scallops. 2. Collate Queensland’s physical oceanographic data and fisheries (i.e. reef fish and saucer scallops) data. 3. Develop stochastic population models for reef fish and saucer scallops, which can link physical oceanographic features (e.g. sea surface temperature anomalies) to catch rates, biological parameters (e.g. growth, reproduction, natural mortality) and ecological aspects (e.g. spatial distribution).
Resumo:
Network data packet capture and replay capabilities are basic requirements for forensic analysis of faults and security-related anomalies, as well as for testing and development. Cyber-physical networks, in which data packets are used to monitor and control physical devices, must operate within strict timing constraints, in order to match the hardware devices' characteristics. Standard network monitoring tools are unsuitable for such systems because they cannot guarantee to capture all data packets, may introduce their own traffic into the network, and cannot reliably reproduce the original timing of data packets. Here we present a high-speed network forensics tool specifically designed for capturing and replaying data traffic in Supervisory Control and Data Acquisition systems. Unlike general-purpose "packet capture" tools it does not affect the observed network's data traffic and guarantees that the original packet ordering is preserved. Most importantly, it allows replay of network traffic precisely matching its original timing. The tool was implemented by developing novel user interface and back-end software for a special-purpose network interface card. Experimental results show a clear improvement in data capture and replay capabilities over standard network monitoring methods and general-purpose forensics solutions.
Resumo:
Physical entrapment was used as an approach to achieve thermal stabilization of enzymes. The ti values for the thermoinactivation of glucose oxidase and glucoamylase were increased several-fold by their entrapment in polyacrylamide gels. In polyacrylate gels the individual enzymes behaved differently, probably owing to microenvironmental effects arising by the polyelectrolyte nature of the carrier.
Resumo:
Analytical solution of a 2-dimensional problem of solidification of a superheated liquid in a semi-infinite mould has been studied in this paper. On the boundary, the prescribed temperature is such that the solidification starts simultaneously at all points of the boundary. Results are also given for the 2-dimensional ablation problem. The solution of the heat conduction equation has been obtained in terms of multiple Laplace integrals involving suitable unknown fictitious initial temperatures. These fictitious initial temperatures have interesting physical interpretations. By choosing suitable series expansions for fictitious initial temperatures and moving interface boundary, the unknown quantities can be determined. Solidification thickness has been calculated for short time and effect of parameters on the solidification thickness has been shown with the help of graphs.
Resumo:
Physical activity (PA) is essential for human health and wellbeing across all age, socioeconomic and ethnic groups. Engagement with the natural world is a new defining criterion for enhancing the benefits of PA particularly for children and young people. Interacting with nature benefits children’s social and emotional wellbeing, develops resilience and reduces the risk of obesity and type 2 diabetes across all population groups. Governments around the world are now recognising the importance of children spending more active time outdoors. However, children’s outdoor activities, free play and nature-related exploration are often structured and supervised by adults due to safety concerns and risks. In this context schools become more accessible and safe options for children to engage in PA outdoors with the presence of nature features. Research on school designs involving young children has revealed that children prefer nature-related features in school environments. Affordances in nature may increase children’s interest in physically active behaviours. Given that present school campuses are designed for operational efficiency and economic reasons there is a need to re-design schools responding to the positive role of nature on human health. If schools were re-designed to incorporate diverse natural features children’s PA and consequent health and wellbeing would likely improve markedly.
Resumo:
Mixed reality stories (MRS) unfold simultaneously in the physical and the virtual world. Advancements in digital technologies, which are now able to capture more contextual information about our physical environments, are enabling novel ways of blending the two worlds. To explore the process of creating stories from this perspective, we conducted a study with creative writers, in which we asked them to write a MRS script for outdoor running. While we saw instances of intentional connections between physical and virtual worlds in their work, we also observed the use of ambiguity or even deliberate contradiction with available contextual information. In this paper we discuss how these approaches can be beneficial for MRS and propose directions for future work.
Resumo:
An analytical solution is presented, making use of the Schwartz-Christoffel transformation, for determining the seepage characteristics for the problem of flow under a weir having two unequal sheetpiles at the ends and embedded in an anisotropic porous medium of finite thickness. Results for several particular cases of simple hydraulic structures can be obtained from the general solution presented. Numerical results in nondimensional form have been given for quantity of seepage and exit gradient distribution for various conditions in the equivalent transformed isotropic section and, by making use of the physical parameters in the actual anisotropic plane and the set of transformation relations given, these quantities (seepage loss, exit gradient) can be interpreted in the actual anisotropic physical plane.