972 resultados para Physical mechanisms
Resumo:
Purinergic stimulation of airway epithelial cells induces Cl- secretion and modulates Na+ absorption by an unknown mechanism. To gain insight into this mechanism, we used a perfused micro-Ussing chamber to assess transepithelial voltage (V-te) and amiloride-sensitive short-circuit current (Isc-Amil) in mouse trachea. Exposure to apical ATP or UTP (each 100 mumol/l) caused a large initial increase in lumen negative V-te and I-sc corresponding to a transient Cl- secretion, while basolateral application of ATP/UTP induced only a small secretory response. Luminal, but not basolateral, application of nucleotides was followed by a sustained and reversible inhibition of Isc-Amil that was independent of extracellular Ca2+ or activation of protein kinase C and was not induced by carbachol (100 mumol/l) or the Ca2+ ionophore ionomycin (1 mumol/l). Removal of extracellular Cl- or exposure to 200 muM DIDS reduced UTP-mediated inhibition of Isc-Amil Substantially. The phospholipase inhibitor U73122 (10 mumol/l) and pertussis toxin (PTX 200 ng/ml) both attenuated UTP-induced Cl- secretion and inhibition of Isc-Amil. Taken together, these data imply a contribution of Cl- conductance and PTX-sensitive G proteins to nucleotide-dependent inhibition of the amiloride-sensitive Na+ current in the mouse trachea.
Resumo:
Approximately half of the motoneurons generated during normal embryonic development undergo programmed cell death. Most of this death occurs during the time when synaptic connections are being formed between motoneurons and their target, skeletal muscle. Subsequent muscle activity stemming from this connection helps determine the final number of surviving motoneurons. These observations have given rise to the idea that motoneuron survival is dependent upon access to muscle derived trophic factors, presumably through intact neuromuscular synapses. However, it is not yet understood how the muscle regulates the supply of such trophic factors, or if there are additional mechanisms operating to control the fate of the innervating motoneuron. Recent observations have highlighted target independent mechanisms that also operate to support the survival of motoneurons, such as early trophic-independent periods of motoneuron death, trophic factors derived from Schwann cells and selection of motoneurons during pathfinding. Here we review recent investigations into motoneuron cell death when the molecular signalling between motoneurons and muscle has been genetically disrupted. From these studies, we suggest that in addition to trophic factors from muscle and/or Schwann cells, specific adhesive interactions between motoneurons and muscle are needed to regulate motoneuron survival. Such interactions, along with intact synaptic basal lamina, may help to regulate the supply and presentation of trophic factors to motoneurons.
Resumo:
The synaptic conductance of the On-Off direction-selective ganglion cells was measured during visual stimulation to determine whether the direction selectivity is a property of the circuitry presynaptic to the ganglion cells or is generated by postsynaptic interaction of excitatory and inhibitory inputs. Three synaptic asymmetries were identified that contribute to the generation of direction-selective responses: (1) a presynaptic mechanism producing stronger excitation in the preferred direction, (2) a presynaptic mechanism producing stronger inhibition in the opposite direction, and (3) postsynaptic interaction of excitation with spatially offset inhibition. Although the on- and off-responses showed the same directional tuning, the off-response was generated by all three mechanisms, whereas the on- response was generated primarily by the two presynaptic mechanisms. The results indicate that, within a single neuron, different strategies are used within distinct dendritic arbors to accomplish the same neural computation.
Resumo:
Previous studies have demonstrated that the initial hypoalgesic effect of spinal manipulative therapy was not antagonized by naloxone and did not exhibit tolerance with repeated applications. The implication is that endogenous opioid mechanisms of pain relief are probably not at play in spinal manipulative therapy. The role of endogenous opioid peptides in manipulation of the peripheral joints has not been investigated. The aim of this study was to evaluate whether the initial hypoalgesic effect of a peripheral manipulative technique (mobilization-with-movement treatment for the elbow) demonstrated a tolerance to repeated applications (ie, reduction in magnitude of effect over repeated applications). Twenty-four participants with unilateral chronic lateral epicondylalgia participated in the study. A repeated measures study was conducted to examine the effect of repeated applications of the mobilization-with-movement treatment for the elbow on 6 separate treatment occasions at least 2 days apart. Pain-free grip strength and pressure pain threshold were chosen as the pain-related outcome measures. Changes in the percent maximum possible effect scores of measures of hypoalgesia were evaluated across the 6 treatment sessions by using linear trend analysis. The results showed no significant difference for the hypoalgesic effect of the treatment technique between sessions (P >.05). This peripheral manipulative therapy treatment technique appeared to have a similar effect profile to previously studied spinal manipulative therapy techniques, thereby contributing to the body of knowledge that indicates that manipulative therapy most likely induces a predominant non-opioid form of analgesia.
Resumo:
Clathrin-coated pits and caveolae are two of the most recognizable features of the plasma membrane of mammalian cells. While our understanding of the machinery regulating and driving clathrin-coated pit-mediated endocytosis has progressed dramatically, including the elucidation of the structure of individual components and partial in vitro reconstitution, the role of caveolae as alternative endocytic carriers still remains elusive 50 years after their discovery. However, recent work has started to provide new insights into endocytosis by caveolae and into apparently related pathways involving lipid raft domains. These pathways, distinguished by their exquisite sensitivity to cholesterol-sequestering agents, can involve caveolae but also exist in cells devoid of caveolins and caveolae. This review examines the current evidence for the involvement of rafts and caveolae in endocytosis and the molecular players involved in their regulation.
Resumo:
Background: Physical activity (PA) patterns are likely to change in young adulthood in line with changes in lifestyle that occur in the transition from adolescence to adulthood. The aim of this study was to ascertain whether key life events experienced by young women in their early twenties are associated with increasing levels of inactivity. Methods: This was a 4-year follow-up of 7281 participants (aged 18 to 23 years at baseline) in the Australian Longitudinal Study of Women's Health, with self-reported measures of PA, life events, body mass index (BMI), and sociodemographic variables. Results: The cross-sectional data indicated no change in PA between baseline (57% active) and follow-up (56% active). However, for almost 40% of the sample, PA category changed between baseline and follow-up, with approximately 20% of the women changing from being active to inactive, and another 20% changing from being inactive to active. After adjustment for age, other sociodemographic variables, BMI, and PA at baseline, women who reported getting married, having a first or subsequent child, or beginning paid work were more likely to be inactive at follow-up than those who did not report these events. Conclusions: The results suggest that life events such as getting married, having children, and starting work are associated with decreased levels of PA in young adult women. Strategies are needed to promote maintenance of activity at the time when most women experience these key life-stage transitions.
Resumo:
The epidemic that is osteoporosis has led to an increasing interest in bone mineral, and the factors that influence the levels of bone mineral, in recent years. While it is unrealistic to try and turn back the clock, a return to an increased level of physical activity may be an important consideration in terms of skeletal health. Peak bone mass is largely determined by heredity, but lifestyle and dietary patterns also influence the level of bone mineral accrued during the growing years. In this review, we summarize the evidence that vigorous weight-bearing physical activity and adequate calcium intake represent the best possibility for enhancing the attainment of an optimal level of bone mineral, within genetic limits.
Resumo:
Argon matrix photolysis of tetrazolo[1,5-a]quinoline 8 and tetrazolo[5,1-a]isoquinoline 7 causes nitrogen elimination and ring expansion to 1,3-diazabenzo[d]cyclohepta-1,2,4,6-tetraene 13. The photolysis of tetrazolo[5,1-a]isoquinoline 7 also causes ring opening to o-cyanophenylketenimine 22. Mechanisms of ring opening of heteroarylnitrenes are discussed.
Resumo:
Objective: To explore relationships between physical activity and mental health cross-sectionally and longitudinally in a large cohort of older Australian women. Method: Women in their 70s participating in the Australian Longitudinal Study on Women's Health responded in 1996 (aged 70-75) and in 1999 (aged 73-78). Cross-sectional data were analyzed for 10,063 women and longitudinal data for 6472. Self-reports were used to categorize women into four categories of physical activity at each time point as well as to define four physical activity transition categories across the 3-year period. Outcome variables for the cross-sectional analyses were the mental health component score (MCS) and mental health subscales of the Medical Outcomes Study Short Form (SF-36). The longitudinal analyses focused on changes in these variables. Confounders included the physical health component scale (PCS) of the SF-36, marital status, body mass index (BMI) and life events. Adjustment for baseline scores was included for the longitudinal analyses. Results: Cross-sectionally, higher levels of physical activity were associated with higher scores on all dependent variables, both with and without adjustment for confounders. Longitudinally, the effects were weaker, but women who had made a transition from some physical activity to none generally showed more negative changes in emotional well-being than those who had always been sedentary, while those who maintained or adopted physical activity had better outcomes. Conclusion: Physical activity is associated with emotional well-being among a population cohort of older women both cross-sectionally and longitudinally, supporting the need for the promotion of appropriate physical activity in this age group. (C) 2003 Elsevier Science Inc. All rights reserved.