828 resultados para Parental Occupational-exposure
Resumo:
This paper explores the implications of the difference between the occupational distribution for males and females in a joint model determining earnings and occupation. The male/female wage differential is evaluated for a number of broad occupational classifications. This is followed by an evaluation of the role and relative importance of inter-occupational and intra-occupational effects as contributors to the overall male/female wage differential The main conclusion following from the econometric results is that intra-occupational effects dominate Thus, policies which attempt to address the gender wage differential by re-allocation of labour across occupations are unlikely to solve the problem.
Resumo:
It has not yet been established whether the spatial variation of particle number concentration (PNC) within a microscale environment can have an effect on exposure estimation results. In general, the degree of spatial variation within microscale environments remains unclear, since previous studies have only focused on spatial variation within macroscale environments. The aims of this study were to determine the spatial variation of PNC within microscale school environments, in order to assess the importance of the number of monitoring sites on exposure estimation. Furthermore, this paper aims to identify which parameters have the largest influence on spatial variation, as well as the relationship between those parameters and spatial variation. Air quality measurements were conducted for two consecutive weeks at each of the 25 schools across Brisbane, Australia. PNC was measured at three sites within the grounds of each school, along with the measurement of meteorological and several other air quality parameters. Traffic density was recorded for the busiest road adjacent to the school. Spatial variation at each school was quantified using coefficient of variation (CV). The portion of CV associated with instrument uncertainty was found to be 0.3 and therefore, CV was corrected so that only non-instrument uncertainty was analysed in the data. The median corrected CV (CVc) ranged from 0 to 0.35 across the schools, with 12 schools found to exhibit spatial variation. The study determined the number of required monitoring sites at schools with spatial variability and tested the deviation in exposure estimation arising from using only a single site. Nine schools required two measurement sites and three schools required three sites. Overall, the deviation in exposure estimation from using only one monitoring site was as much as one order of magnitude. The study also tested the association of spatial variation with wind speed/direction and traffic density, using partial correlation coefficients to identify sources of variation and non-parametric function estimation to quantify the level of variability. Traffic density and road to school wind direction were found to have a positive effect on CVc, and therefore, also on spatial variation. Wind speed was found to have a decreasing effect on spatial variation when it exceeded a threshold of 1.5 (m/s), while it had no effect below this threshold. Traffic density had a positive effect on spatial variation and its effect increased until it reached a density of 70 vehicles per five minutes, at which point its effect plateaued and did not increase further as a result of increasing traffic density.
Resumo:
Motivated by growing considerations of the scale, severity and risks associated with human exposure to indoor particulate matter, this work reviewed existing literature to: (i) identify state-of-the-art experimental techniques used for personal exposure assessment; (ii) compare exposure levels reported for domestic/school settings in different countries (excluding exposure to environmental tobacco smoke and particulate matter from biomass cooking in developing countries); (iii) assess the contribution of outdoor background vs indoor sources to personal exposure; and (iv) examine scientific understanding of the risks posed by personal exposure to indoor aerosols. Limited studies assessing integrated daily residential exposure to just one particle size fraction, ultrafine particles, show that the contribution of indoor sources ranged from 19-76%. This indicates a strong dependence on resident activities, source events and site specificity, and highlights the importance of indoor sources for total personal exposure. Further, it was assessed that 10-30% of the total burden-of-disease from particulate matter exposure was due to indoor generated particles, signifying that indoor environments are likely to be a dominant environmental factor affecting human health. However, due to challenges associated with conducting epidemiological assessments, the role of indoor generated particles has not been fully acknowledged, and improved exposure/risk assessment methods are still needed, together with a serious focus on exposure control.
Resumo:
Background Individual exposure to ultraviolet radiation (UVR) is challenging to measure, particularly for diseases with substantial latency periods between first exposure and diagnosis of outcome, such as cancer. To guide the choice of surrogates for long-term UVR exposure in epidemiologic studies, we assessed how well stable sun-related individual characteristics and environmental/meteorological factors predicted daily personal UVR exposure measurements. Methods We evaluated 123 United States Radiologic Technologists subjects who wore personal UVR dosimeters for 8 hours daily for up to 7 days (N = 837 days). Potential predictors of personal UVR derived from a self-administered questionnaire, and public databases that provided daily estimates of ambient UVR and weather conditions. Factors potentially related to personal UVR exposure were tested individually and in a model including all significant variables. Results The strongest predictors of daily personal UVR exposure in the full model were ambient UVR, latitude, daily rainfall, and skin reaction to prolonged sunlight (R2 = 0.30). In a model containing only environmental and meteorological variables, ambient UVR, latitude, and daily rainfall were the strongest predictors of daily personal UVR exposure (R2 = 0.25). Conclusions In the absence of feasible measures of individual longitudinal sun exposure history, stable personal characteristics, ambient UVR, and weather parameters may help estimate long-term personal UVR exposure.
Resumo:
Early preterm birth (<32 weeks) is associated with in utero infection and inflammation. We used an ovine model of in utero infection to ask if exposure to Ureaplasma serovar 3 (UP) modulated the response of the fetal skin to LPS.
Resumo:
Early preterm birth (<32 weeks) is associated with in utero infection and inflammation. We used an ovine model of in utero infection to ask if exposure to Ureaplasma serovar 3 (UP) modulated the response of the fetal skin to LPS.
Resumo:
In this paper we demonstrate passive vision-based localization in environments more than two orders of magnitude darker than the current benchmark using a 100 webcam and a 500 camera. Our approach uses the camera’s maximum exposure duration and sensor gain to achieve appropriately exposed images even in unlit night-time environments, albeit with extreme levels of motion blur. Using the SeqSLAM algorithm, we first evaluate the effect of variable motion blur caused by simulated exposures of 132 ms to 10000 ms duration on localization performance. We then use actual long exposure camera datasets to demonstrate day-night localization in two different environments. Finally we perform a statistical analysis that compares the baseline performance of matching unprocessed greyscale images to using patch normalization and local neighbourhood normalization – the two key SeqSLAM components. Our results and analysis show for the first time why the SeqSLAM algorithm is effective, and demonstrate the potential for cheap camera-based localization systems that function across extreme perceptual change.
Resumo:
Many studies have reported increasing levels of obesity and overweight in children. Recent policy developments have examined a range of influences on children's eating habits but have left largely unexamined the role of parents in general and mothers in particular. In this study we examined mothers’ understandings of healthy eating and of their influence on their children's eating patterns. Semi-structured interviews were conducted with nine mothers of children aged between 4 and 12 years of age. Interviewees displayed knowledge of recommended eating practices for their children but distinguished this knowledge from actual eating practices. Avoidance of negative social perceptions, pleasure in eating and opportunities for fast food were regarded as more important than eating in accordance with recommended nutritional guidelines. Moreover, the food choices made were viewed as positive alternatives to eating based on nutritional balance. These views pose a challenge for policy initiatives to address obesity and excess weight in children. Future initiatives should have increased regard for the everyday contexts within which children's eating patterns are understood and justified.
Resumo:
Bicycle commuting has the potential to be an effective contributing solution to address some of modern society’s biggest issues, including cardiovascular disease, anthropogenic climate change and urban traffic congestion. However, individuals shifting from a passive to an active commute mode may be increasing their potential for air pollution exposure and the associated health risk. This project, consisting of three studies, was designed to investigate the health effects of bicycle commuters in relation to air pollution exposure, in a major city in Australia (Brisbane). The aims of the three studies were to: 1) examine the relationship of in-commute air pollution exposure perception, symptoms and risk management; 2) assess the efficacy of commute re-routing as a risk management strategy by determining the exposure potential profile of ultrafine particles along commute route alternatives of low and high proximity to motorised traffic; and, 3) evaluate the feasibility of implementing commute re-routing as a risk management strategy by monitoring ultrafine particle exposure and consequential physiological response from using commute route alternatives based on real-world circumstances; 3) investigate the potential of reducing exposure to ultrafine particles (UFP; < 0.1 µm) during bicycle commuting by lowering proximity to motorised traffic with real-time air pollution and acute inflammatory measurements in healthy individuals using their typical, and an alternative to their typical, bicycle commute route. The methods of the three studies included: 1) a questionnaire-based investigation with regular bicycle commuters in Brisbane, Australia. Participants (n = 153; age = 41 ± 11 yr; 28% female) reported the characteristics of their typical bicycle commute, along with exposure perception and acute respiratory symptoms, and amenability for using a respirator or re-routing their commute as risk management strategies; 2) inhaled particle counts measured along popular pre-identified bicycle commute route alterations of low (LOW) and high (HIGH) motorised traffic to the same inner-city destination at peak commute traffic times. During commute, real-time particle number concentration (PNC; mostly in the UFP range) and particle diameter (PD), heart and respiratory rate, geographical location, and meteorological variables were measured. To determine inhaled particle counts, ventilation rate was calculated from heart-rate-ventilation associations, produced from periodic exercise testing; 3) thirty-five healthy adults (mean ± SD: age = 39 ± 11 yr; 29% female) completed two return trips of their typical route (HIGH) and a pre-determined altered route of lower proximity to motorised traffic (LOW; determined by the proportion of on-road cycle paths). Particle number concentration (PNC) and diameter (PD) were monitored in real-time in-commute. Acute inflammatory indices of respiratory symptom incidence, lung function and spontaneous sputum (for inflammatory cell analyses) were collected immediately pre-commute, and one and three hours post-commute. The main results of the three studies are that: 1) healthy individuals reported a higher incidence of specific acute respiratory symptoms in- and post- (compared to pre-) commute (p < 0.05). The incidence of specific acute respiratory symptoms was significantly higher for participants with respiratory disorder history compared to healthy participants (p < 0.05). The incidence of in-commute offensive odour detection, and the perception of in-commute air pollution exposure, was significantly lower for participants with smoking history compared to healthy participants (p < 0.05). Females reported significantly higher incidence of in-commute air pollution exposure perception and other specific acute respiratory symptoms, and were more amenable to commute re-routing, compared to males (p < 0.05). Healthy individuals have indicated a higher incidence of acute respiratory symptoms in- and post- (compared to pre-) bicycle commuting, with female gender and respiratory disorder history indicating a comparably-higher susceptibility; 2) total mean PNC of LOW (compared to HIGH) was reduced (1.56 x e4 ± 0.38 x e4 versus 3.06 x e4 ± 0.53 x e4 ppcc; p = 0.012). Total estimated ventilation rate did not vary significantly between LOW and HIGH (43 ± 5 versus 46 ± 9 L•min; p = 0.136); however, due to total mean PNC, accumulated inhaled particle counts were 48% lower in LOW, compared to HIGH (7.6 x e8 ± 1.5 x e8 versus 14.6 x e8 ± 1.8 x e8; p = 0.003); 3) LOW resulted in a significant reduction in mean PNC (1.91 x e4 ± 0.93 x e4 ppcc vs. 2.95 x e4 ± 1.50 x e4 ppcc; p ≤ 0.001). Commute distance and duration were not significantly different between LOW and HIGH (12.8 ± 7.1 vs. 12.0 ± 6.9 km and 44 ± 17 vs. 42 ± 17 mins, respectively). Besides incidence of in-commute offensive odour detection (42 vs. 56 %; p = 0.019), incidence of dust and soot observation (33 vs. 47 %; p = 0.038) and nasopharyngeal irritation (31 vs. 41 %; p = 0.007), acute inflammatory indices were not significantly associated to in-commute PNC, nor were these indices reduced with LOW compared to HIGH. The main conclusions of the three studies are that: 1) the perception of air pollution exposure levels and the amenability to adopt exposure risk management strategies where applicable will aid the general population in shifting from passive, motorised transport modes to bicycle commuting; 2) for bicycle commuting at peak morning commute times, inhaled particle counts and therefore cardiopulmonary health risk may be substantially reduced by decreasing exposure to motorised traffic, which should be considered by both bicycle commuters and urban planners; 3) exposure to PNC, and the incidence of offensive odour and nasopharyngeal irritation, can be significantly reduced when utilising a strategy of lowering proximity to motorised traffic whilst bicycle commuting, without significantly increasing commute distance or duration, which may bring important benefits for both healthy and susceptible individuals. In summary, the findings from this project suggests that bicycle commuters can significantly lower their exposure to ultrafine particle emissions by varying their commute route to reduce proximity to motorised traffic and associated combustion emissions without necessarily affecting their time of commute. While the health endpoints assessed with healthy individuals were not indicative of acute health detriment, individuals with pre-disposing physiological-susceptibility may benefit considerably from this risk management strategy – a necessary research focus with the contemporary increased popularity of both promotion and participation in bicycle commuting.
Resumo:
An accurate evaluation of the airborne particle dose-response relationship requires detailed measurements of the actual particle concentration levels that people are exposed to, in every microenvironment in which they reside. The aim of this work was to perform an exposure assessment of children in relation to two different aerosol species: ultrafine particles (UFPs) and black carbon (BC). To this purpose, personal exposure measurements, in terms of UFP and BC concentrations, were performed on 103 children aged 8-11 years (10.1 ± 1.1 years) using hand-held particle counters and aethalometers. Simultaneously, a time-activity diary and a portable GPS were used to determine the children’s daily time-activity pattern and estimate their inhaled dose of UFPs and BC. The median concentration to which the study population was exposed was found to be comparable to the high levels typically detected in urban traffic microenvironments, in terms of both particle number (2.2×104 part. cm-3) and BC (3.8 μg m-3) concentrations. Daily inhaled doses were also found to be relatively high and were equal to 3.35×1011 part. day-1 and 3.92×101 μg day-1 for UFPs and BC, respectively. Cooking and using transportation were recognized as the main activities contributing to overall daily exposure, when normalized according to their corresponding time contribution for UFPs and BC, respectively. Therefore, UFPs and BC could represent tracers of children exposure to particulate pollution from indoor cooking activities and transportation microenvironments, respectively.
Resumo:
Aims Physical activity has been shown to increase adolescent self-esteem. The aim of this investigation was to assess adolescent perceptions of parental support for physical activity endeavours, and its relationship with self-esteem among high and low SES groups. Methods Perceptions of parental support, and Rosenberg’s self-esteem (1965) were derived from the Children’s Physical Activity Correlates questionnaire, with scores ranging from 1 (lowest) to 4 (highest). Independent sample t-tests were conducted and Levene’s test indicated homogenous group variance, while Pearson’s r was employed to assess relationships between perceptions of parental support, and self-esteem. Results Overall, 111 (89%) and 64 (55%) high and low SES participants had complete data and were included in the analysis. The high SES differed for self-esteem (M = 3.39, SE = .05) from the low SES group (M = 2.75, SE = .08), t (173) = 6.82, p < .05, with a medium effect size (ES) r = .46. The high SES group scored higher for perceptions of parental support (M = 2.95, SE = .06) than the low SES group (M = 2.71, SE = .07), t (173) = 2.58, p < .05, with a low ES r = .04. Self-esteem was significantly correlated with parental support in both high (r = .34) and low (r = .47) SES groups. Conclusion Results indicate that perceptions of parental support may be a stronger indicator of self-esteem for low, than for high SES adolescents. Future physical activity strategies to promote self-esteem should involve parents as active facilitators.
Resumo:
This grounded theory study examined the practices of twenty-one Australian early childhood teachers who work with children experiencing parental separation and divorce. Findings showed that teachers constructed personalised support for these children. Teachers’ pedagogical decision-making processes had five phases: constructing their knowledge, applying their knowledge, applying decision-making schema, taking action, and monitoring action and evaluating. This study contributes new understandings about teachers’ work with young children experiencing parental separation and divorce, and extends existing theoretical frameworks related to the provision of support. It adds to scholarship by applying grounded theory methodology in a new context. Recommendations are made for school policies and procedures within and across schools and school systems.