990 resultados para PULSED AMPEROMETRIC DETECTION
Resumo:
Early diagnosis of melanoma leads to the best prognosis for patients and may be more likely achieved when those who are at high risk for melanoma undergo regular and systematic monitoring. However, many people rarely or never see a dermatologist. Risk prediction models (recently reviewed by Usher-Smith et al ) could assist to triage people into preventive care appropriate for their risk profile. Most risk prediction models contain measures of phenotype including skin, eye and hair colour as well as genetic mutations. Almost all also contain the number and size of naevi, as well as the presence of naevi with atypical features which are independently associated with melanoma risk. In the absence of formal population-based screening programs for melanoma in most countries worldwide, people with high risk phenotypes may need to consider regular monitoring or self-monitoring of their naevi , especially since the vast majority of melanomas are found by people themselves or their friend and relatives. Another group of patients that will require regular monitoring are patients who have been successfully treated for their first melanoma, whose risk to develop a second melanoma is greatly increased . In a US study of 89,515 melanoma survivors those with a previous diagnosis of melanoma had a 9-fold increased risk of developing subsequent melanoma compared with the general population, equating to a rate of 3.76 per 1000 person-years, while in an Australian study, risk of subsequent melanoma was 6 per 1000 person-years. Regular follow-up is therefore essential for melanoma survivors, especially during the first few years after initial melanoma diagnosis.
Resumo:
Object detection is a fundamental task in many computer vision applications, therefore the importance of evaluating the quality of object detection is well acknowledged in this domain. This process gives insight into the capabilities of methods in handling environmental changes. In this paper, a new method for object detection is introduced that combines the Selective Search and EdgeBoxes. We tested these three methods under environmental variations. Our experiments demonstrate the outperformance of the combination method under illumination and view point variations.
Resumo:
AIM To investigate the number of hypertensive patients, the optometrist is able to identify by routinely taking blood pressure (BP) measurements for patients in "at -risk" groups, and to sample patients' opinions regarding in -office BP measurement. Many of the optometrists in Saudi Arabia practice in optical stores. These stores are wide spread, easily accessible and seldom need appointments. The expanding role of the optometrist as a primary health care provider (PHCP) and the increasing global prevalence of hypertension, highlight the need for an integrated approach towards detecting and monitoring hypertension. METHODS Automated BP measurements were made twice (during the same session) at five selected optometry practices using a validated BP monitor (Omron M6) to assess the number of patients with high BP (HBP) - in at -risk groups -visiting the eye clinic routinely. Prior to data collection, practitioners underwent a two-day training workshop by a cardiologist on hypertension and how to obtain accurate BP readings. A protocol for BP measurement was distributed and retained in all participating clinics. The general attitude towards cardiovascular health of 480 patients aged 37.2 (依12.4)y and their opinion towards in-office BP measurement was assessed using a self -administered questionnaire. RESULTS A response rate of 83.6% was obtained for the survey. Ninety -three of the 443 patients (21.0% ) tested for BP in this study had HBP. Of these, (62 subjects) 67.7% were unaware of their HBP status. Thirty of the 105 subjects (28.6%) who had previously been diagnosed with HBP, still had HBP at the time of this study, and only 22 (73.3%) of these patients were on medication. Also, only 25% of the diagnosed hypertensive patients owned a BP monitor. CONCLUSION Taking BP measurements in optometry practices, we were able to identify one previously undiagnosed patient with HBP for every 8 adults tested. We also identified 30 of 105 previously diagnosed patients whose BP was poorly controlled, twenty-two of whom were on medication. The patients who participated in this study were positively disposed toward the routine measurement of BP by optometrists.
Resumo:
Summary This manual was developed to guide a move towards common standards for undertaking and reporting research microscopy for malaria parasite detection, identification and quantification. It contains procedures based on agreed quality assurance standards for research malaria microscopy defined at a consultation of: TDR, the Special Programme for Research and Training in Tropical Diseases; the Worldwide Antimalarial Resistance Network (WWARN), United Kingdom; the Foundation for Innovative New Diagnostics (FIND), Switzerland; the Centers for Disease Control and Prevention (CDC), USA; the Kenya Medical Research Institute (KEMRI) and later expanded to include Amref Health Africa (Kenya); the Eijkman-Oxford Clinical Research Unit (EOCRU), Indonesia; Institut Pasteur du Cambodge (IPC); Institut de recherche pour le Développement (IRD), Senegal; the Global Good and Intellectual Ventures Laboratory (GG-IVL), USA; the Mahidol-Oxford Tropical Medicine Research Unit (MORU), Thailand; Queensland University of Technology (QUT), Australia, and the Shoklo Malaria Research Unit (SMRU), Thailand. These collaborating institutions commit to adhering to these standards in published research studies. It is hoped that they will form a solid basis for the wider adoption of standardized reference microscopy protocols for malaria research.
Resumo:
Erythropoietin (EPO), a glycoprotein hormone of ∼34 kDa, is an important hematopoietic growth factor, mainly produced in the kidney and controls the number of red blood cells circulating in the blood stream. Sensitive and rapid recombinant human EPO (rHuEPO) detection tools that improve on the current laborious EPO detection techniques are in high demand for both clinical and sports industry. A sensitive aptamer-functionalized biosensor (aptasensor) has been developed by controlled growth of gold nanostructures (AuNS) over a gold substrate (pAu/AuNS). The aptasensor selectively binds to rHuEPO and, therefore, was used to extract and detect the drug from horse plasma by surface enhanced Raman spectroscopy (SERS). Due to the nanogap separation between the nanostructures, the high population and distribution of hot spots on the pAu/AuNS substrate surface, strong signal enhancement was acquired. By using wide area illumination (WAI) setting for the Raman detection, a low RSD of 4.92% over 150 SERS measurements was achieved. The significant reproducibility of the new biosensor addresses the serious problem of SERS signal inconsistency that hampers the use of the technique in the field. The WAI setting is compatible with handheld Raman devices. Therefore, the new aptasensor can be used for the selective extraction of rHuEPO from biological fluids and subsequently screened with handheld Raman spectrometer for SERS based in-field protein detection.
Resumo:
We propose a novel technique for conducting robust voice activity detection (VAD) in high-noise recordings. We use Gaussian mixture modeling (GMM) to train two generic models; speech and non-speech. We then score smaller segments of a given (unseen) recording against each of these GMMs to obtain two respective likelihood scores for each segment. These scores are used to compute a dissimilarity measure between pairs of segments and to carry out complete-linkage clustering of the segments into speech and non-speech clusters. We compare the accuracy of our method against state-of-the-art and standardised VAD techniques to demonstrate an absolute improvement of 15% in half-total error rate (HTER) over the best performing baseline system and across the QUT-NOISE-TIMIT database. We then apply our approach to the Audio-Visual Database of American English (AVDBAE) to demonstrate the performance of our algorithm in using visual, audio-visual or a proposed fusion of these features.
Resumo:
Increasing worldwide terrorist attacks involving explosives presents a growing need for a rapid and ranged explosive detection method that can safely be deployed in the field. Stand-off Raman spectroscopy shows great promise; however, the radiant exposures of lasers required for adequate signal generation are often much greater than what is safe for the eye or the skin, restricting use of the technique to un-populated areas. Here, by determining the safe exposure levels for lasers typically used in Raman spectroscopy, optimal parameter values are identified, which produce the largest possible detection range using power densities that do not exceed the eye-safe limit. It is shown that safe ultraviolet pulse energies can be more than three orders of magnitude greater than equivalent safe visible pulse energies. Coupling this to the 16-fold increase in Raman signal obtained in the ultraviolet at 266 nm over that at 532 nm results in a 131 times larger detection range for the eye-safe 266-nm system over an equivalent eye-safe 532-nm laser system. For the Raman system described here, this translates to a maximum range of 42 m for detecting Teflon with a 266-nm laser emitting a 100-mm diameter beam of 23.5-mJ nanosecond pulses.
Resumo:
This paper presents a novel vision-based underwater robotic system for the identification and control of Crown-Of-Thorns starfish (COTS) in coral reef environments. COTS have been identified as one of the most significant threats to Australia's Great Barrier Reef. These starfish literally eat coral, impacting large areas of reef and the marine ecosystem that depends on it. Evidence has suggested that land-based nutrient runoff has accelerated recent outbreaks of COTS requiring extensive use of divers to manually inject biological agents into the starfish in an attempt to control population numbers. Facilitating this control program using robotics is the goal of our research. In this paper we introduce a vision-based COTS detection and tracking system based on a Random Forest Classifier (RFC) trained on images from underwater footage. To track COTS with a moving camera, we embed the RFC in a particle filter detector and tracker where the predicted class probability of the RFC is used as an observation probability to weight the particles, and we use a sparse optical flow estimation for the prediction step of the filter. The system is experimentally evaluated in a realistic laboratory setup using a robotic arm that moves a camera at different speeds and heights over a range of real-size images of COTS in a reef environment.
Resumo:
Visual information in the form of lip movements of the speaker has been shown to improve the performance of speech recognition and search applications. In our previous work, we proposed cross database training of synchronous hidden Markov models (SHMMs) to make use of external large and publicly available audio databases in addition to the relatively small given audio visual database. In this work, the cross database training approach is improved by performing an additional audio adaptation step, which enables audio visual SHMMs to benefit from audio observations of the external audio models before adding visual modality to them. The proposed approach outperforms the baseline cross database training approach in clean and noisy environments in terms of phone recognition accuracy as well as spoken term detection (STD) accuracy.
Resumo:
Spoken term detection (STD) is the task of looking up a spoken term in a large volume of speech segments. In order to provide fast search, speech segments are first indexed into an intermediate representation using speech recognition engines which provide multiple hypotheses for each speech segment. Approximate matching techniques are usually applied at the search stage to compensate the poor performance of automatic speech recognition engines during indexing. Recently, using visual information in addition to audio information has been shown to improve phone recognition performance, particularly in noisy environments. In this paper, we will make use of visual information in the form of lip movements of the speaker in indexing stage and will investigate its effect on STD performance. Particularly, we will investigate if gains in phone recognition accuracy will carry through the approximate matching stage to provide similar gains in the final audio-visual STD system over a traditional audio only approach. We will also investigate the effect of using visual information on STD performance in different noise environments.
Resumo:
This work investigates the feasibly in using a low noise “C” Band block down-converter as a Ultra High Frequency window coupler for the detection of partial discharge activity from free conducting practices and a protrusion on the high voltage conductor in Gas Insulated Switchgear. The investigated window coupler has a better sensitivity than the internal Ultra High Frequency couplers fitted to the system. The investigated window couplers however are sensitive to changes in the frequency content of the discharge signals and appear to be less sensitive to negative discharges signals produced by a protrusion than the positive discharge signals.
Resumo:
This paper presents preliminary results of an investigation into the detection of partial discharges on the rise of impulse voltages from a point-to-plane gap in SF6. A parallel RC detection impedance is placed in the earth path of a point. Computer simulations are done to determine the values of R and C that will result in the smallest impulse voltage signal and the largest discharge signal across the detection impedance. These simulations and the experimental work show that the impulse voltage signal can not be sufficiently attenuated during the rise time of the applied voltage impulse using the RC detection impedance alone. An alternative discharge detection method is proposed in which a resonant partial discharge coupler is used. Elimination of noise and the impulse voltage signal can be achieved by shorting the coupler plate to the ground plane in the middle of the disk. However, due to the bandwidth of the measuring equipment and noise from the impulse generator it was not possible to detect discharges on the rising edge of a 1.5s voltage impulse using a coupler shorted in the middle. It was found that for this particular coupler, with no shorting points, and if the rising edge of the voltage impulse is longer than 5us, (10us) PD activity can be detected on the rising edge.
Resumo:
Even though crashes between trains and road users are rare events at railway level crossings, they are one of the major safety concerns for the Australian railway industry. Nearmiss events at level crossings occur more frequently, and can provide more information about factors leading to level crossing incidents. In this paper we introduce a video analytic approach for automatically detecting and localizing vehicles from cameras mounted on trains for detecting near-miss events. To detect and localize vehicles at level crossings we extract patches from an image and classify each patch for detecting vehicles. We developed a region proposals algorithm for generating patches, and we use a Convolutional Neural Network (CNN) for classifying each patch. To localize vehicles in images we combine the patches that are classified as vehicles according to their CNN scores and positions. We compared our system with the Deformable Part Models (DPM) and Regions with CNN features (R-CNN) object detectors. Experimental results on a railway dataset show that the recall rate of our proposed system is 29% higher than what can be achieved with DPM or R-CNN detectors.
Resumo:
This research developed a method to detect damage in suspension bridges using vibration characteristics. These bridges exhibit complex vibration and hence it is difficult to use traditional vibration based methods to detect damage in them. This research therefore proposed component specific damage indices and verified their capability to detect and locate damage in the main cables and hangers of suspension bridges.