936 resultados para POLITICA DE FUSION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paramyxovirus cell entry is controlled by the concerted action of two viral envelope glycoproteins, the fusion (F) and the receptor-binding (H) proteins, which together with a cell surface receptor mediate plasma membrane fusion activity. The paramyxovirus F protein belongs to class I viral fusion proteins which typically contain two heptad repeat regions (HR). Particular to paramyxovirus F proteins is a long intervening sequence (IS) located between both HR domains. To investigate the role of the IS domain in regulating fusogenicity, we mutated in the canine distemper virus (CDV) F protein IS domain a highly conserved leucine residue (L372) previously reported to cause a hyperfusogenic phenotype. Beside one F mutant, which elicited significant defects in processing, transport competence, and fusogenicity, all remaining mutants were characterized by enhanced fusion activity despite normal or slightly impaired processing and cell surface targeting. Using anti-CDV-F monoclonal antibodies, modified conformational F states were detected in F mutants compared to the parental protein. Despite these structural differences, coimmunoprecipitation assays did not reveal any drastic modulation in F/H avidity of interaction. However, we found that F mutants had significantly enhanced fusogenicity at low temperature only, suggesting that they folded into conformations requiring less energy to activate fusion. Together, these data provide strong biochemical and functional evidence that the conserved leucine 372 at the base of the HRA coiled-coil of F(wt) controls the stabilization of the prefusogenic state, restraining the conformational switch and thereby preventing extensive cell-cell fusion activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION The aims of this study were to compare lateral cephalograms with other radiologic methods for diagnosing suspected fusions of the cervical spine and to validate the assessment of congenital fusions and osteoarthritic changes against the anatomic truth. METHODS Four cadaver heads were selected with fusion of vertebrae C2 and C3 seen on a lateral cephalogram. Multidetector computed tomography (MDCT) and cone-beam computed tomography (CBCT) were performed and assessed by 5 general radiologists and 5 oral radiologists, respectively. Vertebrae C2 and C3 were examined for osseous fusions, and the left and right facet joints were diagnosed for osteoarthritis. Subsequently, the C2 and C3 were macerated and appraised by a pathologist. Descriptive analysis was performed, and interrater agreements between and within the groups were computed. RESULTS All macerated specimens showed osteoarthritic findings of varying degrees, but no congenital bony fusion. All observers agreed that no fusion was found on MDCT or CBCT. They disagreed on the prevalence of osteoarthritic deformities (general radiologists/MDCT, 100%; oral radiologists/CBCT, 93.3%) and joint space assessment in the facet joints (kappa = 0.452). The agreement within the rater groups differed considerably (general radiologists/MDCT, kappa = 0.612; oral radiologists/CBCT, kappa = 0.240). CONCLUSIONS Lateral cephalograms do not provide dependable data to assess the cervical spine for fusions and cause false-positive detections. Both MDCT interpreted by general radiologists and CBCT interpreted by oral radiologists are reliable methods to exclude potential fusions. Degenerative osteoarthritic changes are diagnosed more accurately and consistently by general radiologists evaluating MDCT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate fixation properties of a new intervertebral anchored fusion device and compare these with ventral locking plate fixation. STUDY DESIGN: In vitro biomechanical evaluation. ANIMALS: Cadaveric canine C4-C7 cervical spines (n = 9). METHODS: Cervical spines were nondestructively loaded with pure moments in a nonconstraining testing apparatus to induce flexion/extension while angular motion was measured. Range of motion (ROM) and neutral zone (NZ) were calculated for (1) intact specimens, (2) specimens after discectomy and fixation with a purpose-built intervertebral fusion cage with integrated ventral fixation, and (3) after removal of the device and fixation with a ventral locking plate. RESULTS: Both fixation techniques resulted in a decrease in ROM and NZ (P < .001) compared with the intact segments. There were no significant differences between the anchored spacer and locking plate fixation. CONCLUSION: An anchored spacer appears to provide similar biomechanical stability to that of locking plate fixation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is unknown how receptor binding by the paramyxovirus attachment proteins (HN, H, or G) triggers the fusion (F) protein to fuse with the plasma membrane for cell entry. H-proteins of the morbillivirus genus consist of a stalk ectodomain supporting a cuboidal head; physiological oligomers consist of non-covalent dimer-of-dimers. We report here the successful engineering of intermolecular disulfide bonds within the central region (residues 91-115) of the morbillivirus H-stalk; a sub-domain that also encompasses the putative F-contacting section (residues 111-118). Remarkably, several intersubunit crosslinks abrogated membrane fusion, but bioactivity was restored under reducing conditions. This phenotype extended equally to H proteins derived from virulent and attenuated morbillivirus strains and was independent of the nature of the contacted receptor. Our data reveal that the morbillivirus H-stalk domain is composed of four tightly-packed subunits. Upon receptor binding, these subunits structurally rearrange, possibly inducing conformational changes within the central region of the stalk, which, in turn, promote fusion. Given that the fundamental architecture appears conserved among paramyxovirus attachment protein stalk domains, we predict that these motions may act as a universal paramyxovirus F-triggering mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fusion toxins used for cancer-related therapy have demonstrated short circulation half-lives, which impairs tumor localization and, hence, efficacy. Here, we demonstrate that the pharmacokinetics of a fusion toxin composed of a designed ankyrin repeat protein (DARPin) and domain I–truncated Pseudomonas Exotoxin A (PE40/ETA″) can be significantly improved by facile bioorthogonal conjugation with a polyethylene glycol (PEG) polymer at a unique position. Fusion of the anti-EpCAM DARPin Ec1 to ETA″ and expression in methionine-auxotrophic E. coli enabled introduction of the nonnatural amino acid azidohomoalanine (Aha) at position 1 for strain-promoted click PEGylation. PEGylated Ec1-ETA″ was characterized by detailed biochemical analysis, and its potential for tumor targeting was assessed using carcinoma cell lines of various histotypes in vitro, and subcutaneous and orthotopic tumor xenografts in vivo. The mild click reaction resulted in a well-defined mono-PEGylated product, which could be readily purified to homogeneity. Despite an increased hydrodynamic radius resulting from the polymer, the fusion toxin demonstrated high EpCAM-binding activity and retained cytotoxicity in the femtomolar range. Pharmacologic analysis in mice unveiled an almost 6-fold increase in the elimination half-life (14 vs. 82 minutes) and a more than 7-fold increase in the area under the curve (AUC) compared with non-PEGylated Ec1-ETA″, which directly translated in increased and longer-lasting effects on established tumor xenografts. Our data underline the great potential of combining the inherent advantages of the DARPin format with bioorthogonal click chemistry to overcome the limitations of engineering fusion toxins with enhanced efficacy for cancer-related therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paramyxovirus entry machinery consists of two glycoproteins that tightly cooperate to achieve membrane fusion for cell entry: the tetrameric attachment protein (HN, H, or G, depending on the paramyxovirus genus) and the trimeric fusion protein (F). Here, we explore whether receptor-induced conformational changes within morbillivirus H proteins promote membrane fusion by a mechanism requiring the active destabilization of prefusion F or by the dissociation of prefusion F from intracellularly preformed glycoprotein complexes. To properly probe F conformations, we identified anti-F monoclonal antibodies (MAbs) that recognize conformation-dependent epitopes. Through heat treatment as a surrogate for H-mediated F triggering, we demonstrate with these MAbs that the morbillivirus F trimer contains a sufficiently high inherent activation energy barrier to maintain the metastable prefusion state even in the absence of H. This notion was further validated by exploring the conformational states of destabilized F mutants and stabilized soluble F variants combined with the use of a membrane fusion inhibitor (3g). Taken together, our findings reveal that the morbillivirus H protein must lower the activation energy barrier of metastable prefusion F for fusion triggering.