961 resultados para Out-Steady-State Analysis
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The theory presented in this paper was primarily developed to give a physical interpretation for the instantaneous power flow on a three-phase induction machine, without a neutral conductor, on any operational state and may be extended to any three-phase load. It is a vectorial interpretation of the instantaneous reactive power theory presented by Akagi et al. Which, believe the authors, isn't enough developed and its physical meaning not yet completely understood. This vectorial interpretation is based on the instantaneous complex power concept defined by Torrens for single-phase, ac, steady-state circuits, and leads to a better understanding of the power phenomenon, particularly of the distortion power. This concept has been extended by the authors to three-phase systems, through the utilization of the instantaneous space vectors. The results of measurements of instantaneous complex power on a self-excited induction generator's terminals, during an over-load application transient, are presented for illustration. The compensation of reactive power proposed by Akagi is discussed and a new horizon for the theory application is opened.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Letras - FCLAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Geografia - IGCE
Resumo:
Aims: Arthrospira platensis has been studied for single-cell protein production because of its biomass composition and its ability of growing in alternative media. This work evaluated the effects of different dilution rates (D) and urea concentrations (N0) on A.similar to platensis continuous culture, in terms of growth, kinetic parameters, biomass composition and nitrogen removal. Methods and results: Arthrospira platensis was continuously cultivated in a glass-made vertical column photobioreactor agitated with Rushton turbines. There were used different dilution rates (0.040.44 day-1) and urea concentrations (0.5 and 5 mmol l-1). With N0 = 5 mmol l-1, the maximum steady-state biomass concentration was1415 mg l-1, achieved with D = 0.04 day-1, but the highest protein content (71.9%) was obtained by applying D = 0.12 day-1, attaining a protein productivity of 106.41 mg l-1 day-1. Nitrogen removal reached 99% on steady-state conditions. Conclusions: The best results were achieved by applying N0 = 5 mmol l-1; however, urea led to inhibitory conditions at D = 0.16 day-1, inducing the system wash-out. The agitation afforded satisfactory mixture and did not harm the trichomes structure. Significance and Impact of the Study: These results can enhance the basis for the continuous removal of nitrogenous wastewater pollutants using cyanobacteria, with an easily assembled photobioreactor.
Resumo:
To refine methods of electroretinographical (ERG) recording for the analysis of low retinal potentials under scotopic conditions in advanced retinal degenerative diseases. Standard Ganzfeld ERG equipment (Diagnosys LLC, Cambridge, UK) was used in 27 healthy volunteers (mean age 28 +/- A SD 8.5 years) to define the stimulation protocol. The protocol was then applied in clinical routine and 992 recordings were obtained from patients (mean age 40.6 +/- A 18.3 years) over a period of 5 years. A blue stimulus with a flicker frequency of 9 Hz was specified under scotopic conditions to preferentially record rod-driven responses. A range of stimulus strengths (0.0000012-6.32 scot. cd s/mA(2) and 6-14 ms flash duration) was tested for maximal amplitudes and interference between rods and cones. Analysis of results was done by standard Fourier Transformation and assessment of signal-to-noise ratio. Optimized stimulus parameters were found to be a time-integrated luminance of 0.012 scot. cd s/mA(2) using a blue (470 nm) flash of 10 ms duration at a repetition frequency of 9 Hz. Characteristic stimulus strength versus amplitude curves and tests with stimuli of red or green wavelength suggest a predominant rod-system response. The 9 Hz response was found statistically distinguishable from noise in 38% of patients with otherwise non-recordable rod responses according to International Society for Clinical Electrophysiology of Vision standards. Thus, we believe this protocol can be used to record ERG potentials in patients with advanced retinal diseases and in the evaluation of potential treatments for these patients. The ease of implementation in clinical routine and of statistical evaluation providing an observer-independent evaluation may further facilitate its employment.
Resumo:
Ischemia/reperfusion injury (IRI) is a leading cause of acute renal failure. The definition of the molecular mechanisms involved in renal IRI and counter protection promoted by ischemic pre-conditioning (IPC) or Hemin treatment is an important milestone that needs to be accomplished in this research area. We examined, through an oligonucleotide microarray protocol, the renal differential transcriptome profiles of mice submitted to IRI, IPC and Hemin treatment. After identifying the profiles of differentially expressed genes observed for each comparison, we carried out functional enrichment analysis to reveal transcripts putatively involved in potential relevant biological processes and signaling pathways. The most relevant processes found in these comparisons were stress, apoptosis, cell differentiation, angiogenesis, focal adhesion, ECM-receptor interaction, ion transport, angiogenesis, mitosis and cell cycle, inflammatory response, olfactory transduction and regulation of actin cytoskeleton. In addition, the most important overrepresented pathways were MAPK, ErbB, JAK/STAT, Toll and Nod like receptors, Angiotensin II, Arachidonic acid metabolism, Wnt and coagulation cascade. Also, new insights were gained about the underlying protection mechanisms against renal IRI promoted by IPC and Hemin treatment. Venn diagram analysis allowed us to uncover common and exclusively differentially expressed genes between these two protective maneuvers, underscoring potential common and exclusive biological functions regulated in each case. In summary, IPC exclusively regulated the expression of genes belonging to stress, protein modification and apoptosis, highlighting the role of IPC in controlling exacerbated stress response. Treatment with the Hmox1 inducer Hemin, in turn, exclusively regulated the expression of genes associated with cell differentiation, metabolic pathways, cell cycle, mitosis, development, regulation of actin cytoskeleton and arachidonic acid metabolism, suggesting a pleiotropic effect for Hemin. These findings improve the biological understanding of how the kidney behaves after IRI. They also illustrate some possible underlying molecular mechanisms involved in kidney protection observed with IPC or Hemin treatment maneuvers.
Resumo:
Transesterification of palm oil with ethanol catalyzed by Pseudomonas fluorescens lipase immobilized on epoxy-polysiloxane-polyvinyl alcohol composite (epoxy-SiO2-PVA) was performed in a continuous packed-bed reactor (PBR). Two strategies were used for improving the miscibility of the substrates: the addition of the organic solvent tert-butanol and the surfactant Triton X-100. Results were compared to those obtained in a solventless reactor, which displayed a biphasic system that passed through the reactor. Using this system, the ethyl ester yield of 61.6 +/- 1.2% was obtained at steady state. Both Triton X-100 and tert-butanol systems were found to be suitable to promote the miscibility of the starting materials; however, the use of Triton X-100 reduced the yield to levels lower than 20%, because of the enzyme desorption from the support surface, as confirmed by scanning electron microscopy analysis. The best performance was found for the reactor running in the presence of tert-butanol which resulted in a stable operating system and an average yield of 87.6 +/- 2.5%. This strategy also gave high biocatalyst operational stability, revealing a half-life of 48 days and an inactivation constant of 0.6 X 10(-3) h(-1).
Resumo:
In the field of vehicle dynamics, commercial software can aid the designer during the conceptual and detailed design phases. Simulations using these tools can quickly provide specific design metrics, such as yaw and lateral velocity, for standard maneuvers. However, it remains challenging to correlate these metrics with empirical quantities that depend on many external parameters and design specifications. This scenario is the case with tire wear, which depends on the frictional work developed by the tire-road contact. In this study, an approach is proposed to estimate the tire-road friction during steady-state longitudinal and cornering maneuvers. Using this approach, a qualitative formula for tire wear evaluation is developed, and conceptual design analyses of cornering maneuvers are performed using simplified vehicle models. The influence of some design parameters such as cornering stiffness, the distance between the axles, and the steer angle ratio between the steering axles for vehicles with two steering axles is evaluated. The proposed methodology allows the designer to predict tire wear using simplified vehicle models during the conceptual design phase.
Resumo:
Analysis of thermohaline properties and currents sampled at an anchor station in the Piacaguera Channel (Santos Estuary) in the austral winter was made in terms of tidal (neap and spring tidal cycles) and non-tidal conditions, with the objective to characterize the stratification, circulation and salt transport due to the fortnightly tidal modulation. Classical methods of observational data analysis of hourly and nearly synoptic observations and analytical simulations of nearly steady-state salinity and longitudinal velocity profiles were used. During the neap tidal cycle the flood (v<0) and ebb (v>0) velocities varied in the range of -0.20 m/s to 0.30 m/s associated with a small salinity variation from surface to bottom (26.4 psu to 30.7 psu). In the spring tidal cycle the velocities increased and varied in the range of -0.40 m/s to 0.45 m/s, but the salinity stratification remained almost unaltered. The steady-state salinity and velocity profiles simulated with an analytical model presented good agreement (Skill near 1.0), in comparison with the observational profiles. During the transitional fortnightly tidal modulation period there was no changes in the channel classification (type 2a - partially mixed and weakly stratified), because the potential energy rate was to low to enhance the halocline erosion. These results, associated with the high water column vertical stability (RiL > 20) and the low estuarine Richardson number (RiE = 1.6), lead to the conclusions: i) the driving mechanism for the estuary circulation and mixing was mainly balanced by the fresh water discharge and the tidal forcing associated with the baroclinic component of the gradient pressure force; ii) there was no changes in the thermohaline and circulation characteristics due to the forthnigtly tidal modulation; and iii) the nearly steady-state of the vertical salinity and velocity profiles were well simulated with a theoretical classical analytical model.
Resumo:
The development of polymer-based photovoltaic devices brings the promise of low-cost and lightweight solar energy conversion systems. This technology requires new materials and device architectures with enhanced efficiency and lifetime, which depends on the understanding of charge-transport mechanisms. Organic films combined with electronegative nanoparticles may form systems with efficient dissociation of the photogenerated excitons, thus increasing the number of carriers to be collected by the electrodes. In this paper we investigate the steady-state photoconductive action spectra of devices formed by a bilayer of regio-regular poly(3-hexylthiophene) (RRP3HT) and TiO2 sandwiched between ITO and aluminum electrodes (ITO/TiO2:RRP3HT/Al). Photocurrents were measured for distinct bias voltages with illumination from either side of the device. Heterojunction structures were prepared by spin coating a RRP3HT film on an already deposited TiO2 layer on ITO. Symbatic and antibatic curves were obtained and a model for photocurrent action spectra was able to fit the symbatic responses. The quantum yield increased with the electric field, indicating that exciton dissociation is a field-assisted process as in an Onsager mechanism. Furthermore, the quantum yield was significantly higher when illumination was carried out through the ITO electrode onto which the TiO2 layer was deposited, as the highly electronegative TiO2 nanoparticles were efficient in exciton dissociation.