871 resultados para Optimal Redundancy
Resumo:
Due to the wide diversity of unknown organisms in the environment, 99% of them cannot be grown in traditional culture medium in laboratories. Therefore, metagenomics projects are proposed to study microbial communities present in the environment, from molecular techniques, especially the sequencing. Thereby, for the coming years it is expected an accumulation of sequences produced by these projects. Thus, the sequences produced by genomics and metagenomics projects present several challenges for the treatment, storing and analysis such as: the search for clones containing genes of interest. This work presents the OCI Metagenomics, which allows defines and manages dynamically the rules of clone selection in metagenomic libraries, thought an algebraic approach based on process algebra. Furthermore, a web interface was developed to allow researchers to easily create and execute their own rules to select clones in genomic sequence database. This software has been tested in metagenomic cosmid library and it was able to select clones containing genes of interest. Copyright 2010 ACM.
Resumo:
A bilevel programming approach for the optimal contract pricing of distributed generation (DG) in distribution networks is presented. The outer optimization problem corresponds to the owner of the DG who must decide the contract price that would maximize his profits. The inner optimization problem corresponds to the distribution company (DisCo), which procures the minimization of the payments incurred in attending the expected demand while satisfying network constraints. The meet the expected demand the DisCo can purchase energy either form the transmission network through the substations or form the DG units within its network. The inner optimization problem is substituted by its Karush- Kuhn-Tucker optimality conditions, turning the bilevel programming problem into an equivalent single-level nonlinear programming problem which is solved using commercially available software. © 2010 IEEE.
Resumo:
We consider free time optimal control problems with pointwise set control constraints u(t) ∈ U(t). Here we derive necessary conditions of optimality for those problem where the set U(t) is defined by equality and inequality control constraints. The main ingredients of our analysis are a well known time transformation and recent results on necessary conditions for mixed state-control constraints. ©2010 IEEE.
Resumo:
This paper proposes a new approach for optimal phasor measurement units placement for fault location on electric power distribution systems using Greedy Randomized Adaptive Search Procedure metaheuristic and Monte Carlo simulation. The optimized placement model herein proposed is a general methodology that can be used to place devices aiming to record the voltage sag magnitudes for any fault location algorithm that uses voltage information measured at a limited set of nodes along the feeder. An overhead, three-phase, three-wire, 13.8 kV, 134-node, real-life feeder model is used to evaluate the algorithm. Tests show that the results of the fault location methodology were improved thanks to the new optimized allocation of the meters pinpointed using this methodology. © 2011 IEEE.
Resumo:
This paper presents a new methodology for solving the optimal VAr planning problem in multi-area electric power systems, using the Dantzig-Wolfe decomposition. The original multi-area problem is decomposed into subproblems (one for each area) and a master problem (coordinator). The solution of the VAr planning problem in each area is based on the application of successive linear programming, and the coordination scheme is based on the reactive power marginal costs in the border bus. The aim of the model is to provide coordinated mechanisms to carry out the VAr planning studies maximizing autonomy and confidentiality for each area, assuring global economy to the whole system. Using the mathematical model and computational implementation of the proposed methodology, numerical results are presented for two interconnected systems, each of them composed of three equal subsystems formed by IEEE30 and IEEE118 test systems. © 2011 IEEE.
Resumo:
Due to the renewed interest in distributed generation (DG), the number of DG units incorporated in distribution systems has been rapidly increasing in the past few years. This situation requires new analysis tools for understanding system performance, and taking advantage of the potential benefits of DG. This paper presents an evolutionary multi-objective programming approach to determine the optimal operation of DG in distribution systems. The objectives are the minimization of the system power losses and operation cost of the DG units. The proposed approach also considers the inherent stochasticity of DG technologies powered by renewable resources. Some tests were carried out on the IEEE 34 bus distribution test system showing the robustness and applicability of the proposed methodology. © 2011 IEEE.
Resumo:
The aim of this work is the application of the Interior Point and Branch and Bound methods in multiobjective optimization models related to sugarcane harvest residual biomass. These methods showed their viability to help on choosing the sugarcane planting varieties, searching to optimize cost and energy balance of harvest residual biomass, which have conflitant objectives. These methods provide satisfactory results, with fair computing performance and reliable and consistent solutions to the analyzed models. © 2011 IEEE.
Resumo:
Problems as voltage increase at the end of a feeder, demand supply unbalance in a fault condition, power quality decline, increase of power losses, and reduction of reliability levels may occur if Distributed Generators (DGs) are not properly allocated. For this reason, researchers have been employed several solution techniques to solve the problem of optimal allocation of DGs. This work is focused on the ancillary service of reactive power support provided by DGs. The main objective is to price this service by determining the costs in which a DG incurs when it loses sales opportunity of active power, i.e, by determining the Loss of Opportunity Costs (LOC). The LOC will be determined for different allocation alternatives of DGs as a result of a multi-objective optimization process, aiming the minimization of losses in the lines of the system and costs of active power generation from DGs, and the maximization of the static voltage stability margin of the system. The effectiveness of the proposed methodology in improving the goals outlined was demonstrated using the IEEE 34 bus distribution test feeder with two DGs cosidered to be allocated. © 2011 IEEE.
Resumo:
This work proposes a methodology for optimized allocation of switches for automatic load transfer in distribution systems in order to improve the reliability indexes by restoring such systems which present voltage classes of 23 to 35 kV and radial topology. The automatic switches must be allocated on the system in order to transfer load remotely among the sources at the substations. The problem of switch allocation is formulated as nonlinear constrained mixed integer programming model subject to a set of economical and physical constraints. A dedicated Tabu Search (TS) algorithm is proposed to solve this model. The proposed methodology is tested for a large real-life distribution system. © 2011 IEEE.
Resumo:
This paper presents the generation of optimal trajectories by genetic algorithms (GA) for a planar robotic manipulator. The implemented GA considers a multi-objective function that minimizes the end-effector positioning error together with the joints angular displacement and it solves the inverse kinematics problem for the trajectory. Computer simulations results are presented to illustrate this implementation and show the efficiency of the used methodology producing soft trajectories with low computing cost. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
A theoretical model was developed in order to determine the optimal moment for substituting the sprayer and pressure regulator kit on a center pivot irrigation machine. The model is based on the hypothesis that pressure regulator and sprayer deterioration decrease irrigation uniformity. To compensate the deficit that happens at under irrigated areas, an increase on irrigation depth is required. The model considers: additional water consumption and energy costs, maintenance and labor costs, as well as yield losses associated with under or over irrigated areas. The sum of all these components is compared to buying and installing a new spray kit cost, allowing the farmer to decide the best moment to renovate the sprayer and pressure regulator kits on a center pivot irrigation machine based on economic criteria.
Resumo:
A theoretical model developed by the authors for determining the optimal moment to substitute sprayer and pressure regulator kit on a center pivot irrigating potatoes and beans has been applied. The methodology compares the sum of the costs due to additional consumption of water and energy, maintenance and labor, as well as yield losses associated to areas with deficit or over irrigation to the costs due to buy and install a new sprinkling set on the pivot. The results showed that for a reduction of 3.07% of the Hermann and Hein’s Uniformity Coefficient (UCh), the substitution of the sprinkling module on the pivot is justified when potatoes and beans are cultivated.
Resumo:
Lagrangian points L4 and L5 lie at 60 degrees ahead of and behind Moon in its orbit with respect to the Earth. Each one of them is a third point of an equilateral triangle with the base of the line defined by those two bodies. These Lagrangian points are stable for the Earth-Moon mass ratio. Because of their distance electromagnetic radiations from the Earth arrive on them substantially attenuated. As so, these Lagrangian points represent remarkable positions to host astronomical observatories. However, this same distance characteristic may be a challenge for periodic servicing mission. In this work, we introduce a new low-cost orbital transfer strategy that opportunistically combine chaotic and swing-by transfers to get a very efficient strategy that can be used for servicing mission on astronomical mission placed on Lagrangian points L4 or L5. This strategy is not only efficient with respect to thrust requirement, but also its time transfer is comparable to others known transfer techniques based on time optimization. Copyright ©2010 by the International Astronautical Federation. All rights reserved.
Resumo:
This paper presents a mixed-integer linear programming approach to solving the optimal fixed/switched capacitors allocation (OCA) problem in radial distribution systems with distributed generation. The use of a mixed-integer linear formulation guarantees convergence to optimality using existing optimization software. The results of one test system and one real distribution system are presented in order to show the accuracy as well as the efficiency of the proposed solution technique. © 2011 IEEE.
Resumo:
Includes bibliography