963 resultados para Neutron irradiation
Resumo:
The mechanical response under compression of LiF single crystal micropillars oriented in the [111] direction was studied. Micropillars of different diameter (in the range 1–5 lm) were obtained by etching the matrix in directionally-solidified NaCl–LiF and KCl–LiF eutectic compounds. Selected micropillars were exposed to high-energy Ga+ ions to ascertain the effect of ion irradiation on the mechanical response. Ion irradiation led to an increase of approximately 30% in the yield strength and the maximum compressive strength but no effect of the micropillar diameter on flow stress was found in either the as-grown or the ion irradiated pillars. The dominant deformation micromechanisms were analyzed by means of crystal plasticity finite element simulations of the compression test, which explained the strong effect of micropillar misorientation on the mechanical response. Finally, the lack of size effect on the flow stress was discussed to the light of previous studies in LiF and other materials which show high lattice resistance to dislocation motion.
Resumo:
The neutronics hall of the Nuclear Engineering Department at the Polytechnical University of Madrid has been characterized. The neutron spectra and the ambient dose equivalent produced by an 241AmBe source were measured at various source-to-detector distances on the new bench. Using Monte Carlo methods a detailed model of the neutronics hall was designed, and neutron spectra and the ambient dose equivalent were calculated at the same locations where measurements were carried out. A good agreement between measured and calculated values was found.
Resumo:
The objective of this work is to non-destructively determine the residual stress profile in the bulk of two characteristic types of alumina-based composites, with the aim of improving their durability and structural integrity.
Resumo:
The basics of laser driven neutron sources, properties and possible applications are discussed. We describe the laser driven nuclear processes which trigger neutron generation, namely, nuclear reactions induced by laser driven ion beam (ion n), thermonuclear fusion by implosion and photo-induced nuclear (gamma n) reactions. Based on their main properties, i.e. point source (<100 μm) and short durations (< ns), different applications are described, such as radiography, time-resolved spectroscopy and pump-probe experiments. Prospects on the development of laser technology suggest that, as higher intensities and higher repetition rate lasers become available (for example, using DPSSL technology), laser driven methodologies may provide neutron fluxes comparable to that achieved by accelerator driven neutron sources in the near future.
Resumo:
Swift heavy ion irradiation (ions with mass heavier than 15 and energy exceeding MeV/amu) transfer their energy mainly to the electronic system with small momentum transfer per collision. Therefore, they produce linear regions (columnar nano-tracks) around the straight ion trajectory, with marked modifications with respect to the virgin material, e.g., phase transition, amorphization, compaction, changes in physical or chemical properties. In the case of crystalline materials the most distinctive feature of swift heavy ion irradiation is the production of amorphous tracks embedded in the crystal. Lithium niobate is a relevant optical material that presents birefringence due to its anysotropic trigonal structure. The amorphous phase is certainly isotropic. In addition, its refractive index exhibits high contrast with those of the crystalline phase. This allows one to fabricate waveguides by swift ion irradiation with important technological relevance. From the mechanical point of view, the inclusion of an amorphous nano-track (with a density 15% lower than that of the crystal) leads to the generation of important stress/strain fields around the track. Eventually these fields are the origin of crack formation with fatal consequences for the integrity of the samples and the viability of the method for nano-track formation. For certain crystal cuts (X and Y), these fields are clearly anisotropic due to the crystal anisotropy. We have used finite element methods to calculate the stress/strain fields that appear around the ion-generated amorphous nano-tracks for a variety of ion energies and doses. A very remarkable feature for X cut-samples is that the maximum shear stress appears on preferential planes that form +/-45º with respect to the crystallographic planes. This leads to the generation of oriented surface cracks when the dose increases. The growth of the cracks along the anisotropic crystal has been studied by means of novel extended finite element methods, which include cracks as discontinuities. In this way we can study how the length and depth of a crack evolves as function of the ion dose. In this work we will show how the simulations compare with experiments and their application in materials modification by ion irradiation.
Crack mechanical failure in ceramic materials under ion irradiation: case of lithium niobate crystal
Resumo:
Swift heavy ion irradiation (ions with mass heavier than 15 and energy exceeding MeV/amu) transfer their energy mainly to the electronic system with small momentum transfer per collision. Therefore, they produce linear regions (columnar nano-tracks) around the straight ion trajectory, with marked modifications with respect to the virgin material, e.g., phase transition, amorphization, compaction, changes in physical or chemical properties. In the case of crystalline materials the most distinctive feature of swift heavy ion irradiation is the production of amorphous tracks embedded in the crystal. Lithium niobate is a relevant optical material that presents birefringence due to its anysotropic trigonal structure. The amorphous phase is certainly isotropic. In addition, its refractive index exhibits high contrast with those of the crystalline phase. This allows one to fabricate waveguides by swift ion irradiation with important technological relevance. From the mechanical point of view, the inclusion of an amorphous nano-track (with a density 15% lower than that of the crystal) leads to the generation of important stress/strain fields around the track. Eventually these fields are the origin of crack formation with fatal consequences for the integrity of the samples and the viability of the method for nano-track formation. For certain crystal cuts (X and Y), these fields are clearly anisotropic due to the crystal anisotropy. We have used finite element methods to calculate the stress/strain fields that appear around the ion- generated amorphous nano-tracks for a variety of ion energies and doses. A very remarkable feature for X cut-samples is that the maximum shear stress appears on preferential planes that form +/-45º with respect to the crystallographic planes. This leads to the generation of oriented surface cracks when the dose increases. The growth of the cracks along the anisotropic crystal has been studied by means of novel extended finite element methods, which include cracks as discontinuities. In this way we can study how the length and depth of a crack evolves as function of the ion dose. In this work we will show how the simulations compare with experiments and their application in materials modification by ion irradiation.
Resumo:
Outline: • Motivation, aim • Complement waveguide data on silica • Optical data in quartz • Detailed analysis, i.e. both fluence kinetics and resolution • Efficiency of irradiation and analysis, samples, time... • Experimental set-up description • Reflectance procedure • Options: light source (lasers, white light..), detectors, configurations • Results and discussion • Comparative of amorphous and crystalline phases
Resumo:
Introduction - SiO 2 •Simple composition and structure; Crystalline and amorphous phases •Adequate for atomistic simulations •Abundant in nature. Relevant for many technologies -Irradiation with swift heavy ions: •They provide EXTREME physical conditions •Very high excitation densities similar to high power lasers •Very high local temperatures •By playing with high energy and heavy mass (SHI) : •One can go from low electronic excitations (collisions regime) to high electronic excitations (electronic regime
Resumo:
Irradiation with swift heavy ions (SHI), roughly defined as those having atomic masses larger than 15 and energies exceeding 1 MeV/amu, may lead to significant modification of the irradiated material in a nanometric region around the (straight) ion trajectory (latent tracks). In the case of amorphous silica, SHI irradiation originates nano-tracks of higher density than the virgin material (densification). As a result, the refractive index is increased with respect to that of the surroundings. Moreover, track overlapping leads to continuous amorphous layers that present a significant contrast with respect to the pristine substrate. We have recently demonstrated that SHI irradiation produces a large number of point defects, easily detectable by a number of experimental techniques (work presented in the parallel conference ICDIM). The mechanisms of energy transfer from SHI to the target material have their origin in the high electronic excitation induced in the solid. A number of phenomenological approaches have been employed to describe these mechanisms: coulomb explosion, thermal spike, non-radiative exciton decay, bond weakening. However, a detailed microscopic description is missing due to the difficulty of modeling the time evolution of the electronic excitation. In this work we have employed molecular dynamics (MD) calculations to determine whether the irradiation effects are related to the thermal phenomena described by MD (in the ps domain) or to electronic phenomena (sub-ps domain), e.g., exciton localization. We have carried out simulations of up to 100 ps with large boxes (30x30x8 nm3) using a home-modified version of MDCASK that allows us to define a central hot cylinder (ion track) from which heat flows to the surrounding cold bath (unirradiated sample). We observed that once the cylinder has cooled down, the Si and O coordination numbers are 4 and 2, respectively, as in virgin silica. On the other hand, the density of the (cold) cylinder increases with respect to that of silica and, furthermore, the silica network ring size decreases. Both effects are in agreement with the observed densification. In conclusion, purely thermal effects do not explain the generation of point defects upon irradiation, but they do account for the silica densification.
Resumo:
Kinetic Monte Carlo (KMC) is a widely used technique to simulate the evolution of radiation damage inside solids. Despite de fact that this technique was developed several decades ago, there is not an established and easy to access simulating tool for researchers interested in this field, unlike in the case of molecular dynamics or density functional theory calculations. In fact, scientists must develop their own tools or use unmaintained ones in order to perform these types of simulations. To fulfil this need, we have developed MMonCa, the Modular Monte Carlo simulator. MMonCa has been developed using professional C++ programming techniques and has been built on top of an interpreted language to allow having a powerful yet flexible, robust but customizable and easy to access modern simulator. Both non lattice and Lattice KMC modules have been developed. We will present in this conference, for the first time, the MMonCa simulator. Along with other (more detailed) contributions in this meeting, the versatility of MMonCa to study a number of problems in different materials (particularly, Fe and W) subject to a wide range of conditions will be shown. Regarding KMC simulations, we have studied neutron-generated cascade evolution in Fe (as a model material). Starting with a Frenkel pair distribution we have followed the defect evolution up to 450 K. Comparison with previous simulations and experiments shows excellent agreement. Furthermore, we have studied a more complex system (He-irradiated W:C) using a previous parametrization [1]. He-irradiation at 4 K followed by isochronal annealing steps up to 500 K has been simulated with MMonCa. The He energy was 400 eV or 3 keV. In the first case, no damage is associated to the He implantation, whereas in the second one, a significant Frenkel pair concentration (evolving into complex clusters) is associated to the He ions. We have been able to explain He desorption both in the absence and in the presence of Frenkel pairs and we have also applied MMonCa to high He doses and fluxes at elevated temperatures. He migration and trapping dominate the kinetics of He desorption. These processes will be discussed and compared to experimental results. [1] C.S. Becquart et al. J. Nucl. Mater. 403 (2010) 75
Resumo:
In this work the use of ESS-Bilbao fast neutron lines for irradiation of materials for nuclear fusion is studied. For the comparison of ESS-Bilbao with an inertial fusion facility a simplified model of HiPER chamber has been used. Several positions for irradiation at ESS-Bilbao have been also compared. The material chosen for the damage analysis is silica due to its importance on IFC optics. In this work a detailed comparison between the two facilities for silica irradiation is given. The comparison covers the neutron fluxes, doses, defect production and PKA spectra. This study is also intended as a methodological approach or guideline for future works on other materials.
Resumo:
An analysis and comparison of daily and yearly solar irradiation from the satellite CM SAF database and a set of 301 stations from the Spanish SIAR network is performed using data of 2010 and 2011. This analysis is completed with the comparison of the estimations of effective irradiation incident on three different tilted planes (fixed, two axis tracking, north-south hori- zontal axis) using irradiation from these two data sources. Finally, a new map of yearly values of irradiation both on the horizontal plane and on inclined planes is produced mixing both sources with geostatistical techniques (kriging with external drift, KED) The Mean Absolute Difference (MAD) between CM SAF and SIAR is approximately 4% for the irradiation on the horizontal plane and is comprised between 5% and 6% for the irradiation incident on the inclined planes. The MAD between KED and SIAR, and KED and CM SAF is approximately 3% for the irradiation on the horizontal plane and is comprised between 3% and 4% for the irradiation incident on the inclined planes. The methods have been implemented using free software, available as supplementary ma- terial, and the data sources are freely available without restrictions.
Resumo:
This paper presents a new methodology to build parametric models to estimate global solar irradiation adjusted to specific on-site characteristics based on the evaluation of variable im- portance. Thus, those variables higly correlated to solar irradiation on a site are implemented in the model and therefore, different models might be proposed under different climates. This methodology is applied in a study case in La Rioja region (northern Spain). A new model is proposed and evaluated on stability and accuracy against a review of twenty-two already exist- ing parametric models based on temperatures and rainfall in seventeen meteorological stations in La Rioja. The methodology of model evaluation is based on bootstrapping, which leads to achieve a high level of confidence in model calibration and validation from short time series (in this case five years, from 2007 to 2011). The model proposed improves the estimates of the other twenty-two models with average mean absolute error (MAE) of 2.195 MJ/m2 day and average confidence interval width (95% C.I., n=100) of 0.261 MJ/m2 day. 41.65% of the daily residuals in the case of SIAR and 20.12% in that of SOS Rioja fall within the uncertainty tolerance of the pyranometers of the two networks (10% and 5%, respectively). Relative differences between measured and estimated irradiation on an annual cumulative basis are below 4.82%. Thus, the proposed model might be useful to estimate annual sums of global solar irradiation, reaching insignificant differences between measurements from pyranometers.
Resumo:
An analysis and comparison of daily and yearly solar irradiation from the satellite CM SAF database and a set of 301 stations from the Spanish SIAR network is performed using data of 2010 and 2011. This analysis is completed with the comparison of the estimations of effective irradiation incident on three different tilted planes (fixed, two axis tracking, north-south hori- zontal axis) using irradiation from these two data sources. Finally, a new map of yearly values of irradiation both on the horizontal plane and on inclined planes is produced mixing both sources with geostatistical techniques (kriging with external drift, KED) The Mean Absolute Difference (MAD) between CM SAF and SIAR is approximately 4% for the irradiation on the horizontal plane and is comprised between 5% and 6% for the irradiation incident on the inclined planes. The MAD between KED and SIAR, and KED and CM SAF is approximately 3% for the irradiation on the horizontal plane and is comprised between 3% and 4% for the irradiation incident on the inclined planes. The methods have been implemented using free software, available as supplementary ma- terial, and the data sources are freely available without restrictions.
Resumo:
A methodology for downscaling solar irradiation from satellite-derived databases is described using R software. Different packages such as raster, parallel, solaR, gstat, sp and rasterVis are considered in this study for improving solar resource estimation in areas with complex topography, in which downscaling is a very useful tool for reducing inherent deviations in satellite-derived irradiation databases, which lack of high global spatial resolution. A topographical analysis of horizon blocking and sky-view is developed with a digital elevation model to determine what fraction of hourly solar irradiation reaches the Earth's surface. Eventually, kriging with external drift is applied for a better estimation of solar irradiation throughout the region analyzed. This methodology has been implemented as an example within the region of La Rioja in northern Spain, and the mean absolute error found is a striking 25.5% lower than with the original database.