835 resultados para Nano-TiO2
Resumo:
In this work we propose a method for cleaving silicon-based photonic chips by using a laser based micromachining system, consisting of a ND:YVO4laser emitting at 355 nm in nanosecond pulse regime and a micropositioning system. The laser makes grooved marks placed at the desired locations and directions where cleaves have to be initiated, and after several processing steps, a crack appears and propagate along the crystallographic planes of the silicon wafer. This allows cleavage of the chips automatically and with high positioning accuracy, and provides polished vertical facets with better quality than the obtained with other cleaving process, which eases the optical characterization of photonic devices. This method has been found to be particularly useful when cleaving small-sized chips, where manual cleaving is hard to perform; and also for polymeric waveguides, whose facets get damaged or even destroyed with polishing or manual cleaving processing. Influence of length of the grooved line and speed of processing is studied for a variety of silicon chips. An application for cleaving and characterizing sol–gel waveguides is presented. The total amount of light coupled is higher than when using any other procedure.
Resumo:
The elastic strain/stress fields (halo) around a compressed amorphous nano-track (core) caused by a single high-energy ion impact on LiNbO3 are calculated. A method is developed to approximately account for the effects of crystal anisotropy of LiNbO3 (symmetry 3m) on the stress fields for tracks oriented along the crystal axes (X, Y or Z). It only considers the zero-order (axial) harmonic contribution to the displacement field in the perpendicular plane and uses effective Poisson moduli for each particular orientation. The anisotropy is relatively small; however, it accounts for some differential features obtained for irradiations along the crystallographic axes X, Y and Z. In particular, the irradiation-induced disorder (including halo) and the associated surface swelling appear to be higher for irradiations along the X- or Y-axis in comparison with those along the Z-axis. Other irradiation effects can be explained by the model, e.g. fracture patterns or the morphology of pores after chemical etching of tracks. Moreover, it offers interesting predictions on the effect of irradiation on lattice parameters
Resumo:
The thermal annealing of amorphous tracks of nanometer-size diameter generated in lithium niobate (LiNbO3) by Bromine ions at 45 MeV, i.e., in the electronic stopping regime, has been investigated by RBS/C spectrometry in the temperature range from 250°C to 350°C. Relatively low fluences have been used (<1012 cm−2) to produce isolated tracks. However, the possible effect of track overlapping has been investigated by varying the fluence between 3×1011 cm−2 and 1012 cm−2. The annealing process follows a two-step kinetics. In a first stage (I) the track radius decreases linearly with the annealing time. It obeys an Arrhenius-type dependence on annealing temperature with activation energy around 1.5 eV. The second stage (II) operates after the track radius has decreased down to around 2.5 nm and shows a much lower radial velocity. The data for stage I appear consistent with a solid-phase epitaxial process that yields a constant recrystallization rate at the amorphous-crystalline boundary. HRTEM has been used to monitor the existence and the size of the annealed isolated tracks in the second stage. On the other hand, the thermal annealing of homogeneous (buried) amorphous layers has been investigated within the same temperature range, on samples irradiated with Fluorine at 20 MeV and fluences of ∼1014 cm−2. Optical techniques are very suitable for this case and have been used to monitor the recrystallization of the layers. The annealing process induces a displacement of the crystalline-amorphous boundary that is also linear with annealing time, and the recrystallization rates are consistent with those measured for tracks. The comparison of these data with those previously obtained for the heavily damaged (amorphous) layers produced by elastic nuclear collisions is summarily discussed.
Resumo:
We have recently demonstrated a biosensor based on a lattice of SU8 pillars on a 1 μm SiO2/Si wafer by measuring vertically reflectivity as a function of wavelength. The biodetection has been proven with the combination of Bovine Serum Albumin (BSA) protein and its antibody (antiBSA). A BSA layer is attached to the pillars; the biorecognition of antiBSA involves a shift in the reflectivity curve, related with the concentration of antiBSA. A detection limit in the order of 2 ng/ml is achieved for a rhombic lattice of pillars with a lattice parameter (a) of 800 nm, a height (h) of 420 nm and a diameter(d) of 200 nm. These results correlate with calculations using 3D-finite difference time domain method. A 2D simplified model is proposed, consisting of a multilayer model where the pillars are turned into a 420 nm layer with an effective refractive index obtained by using Beam Propagation Method (BPM) algorithm. Results provided by this model are in good correlation with experimental data, reaching a reduction in time from one day to 15 minutes, giving a fast but accurate tool to optimize the design and maximizing sensitivity, and allows analyzing the influence of different variables (diameter, height and lattice parameter). Sensitivity is obtained for a variety of configurations, reaching a limit of detection under 1 ng/ml. Optimum design is not only chosen because of its sensitivity but also its feasibility, both from fabrication (limited by aspect ratio and proximity of the pillars) and fluidic point of view. (© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Resumo:
The aim of this work is the theoretical study of the band alignment between the two components of a hybrid organic-inorganic solar-cell. The working organic molecules are metal tetra-sulphonated phthalocyanines (M-Pc) and the inorganic material is nano-porous ZnO growth in the 001 direction. The theoretical calculations are being made using the density functional theory (DFT) using a GGA functional with the SIESTA code, which projects electron wave functions and density onto a real space grid and uses as basis set a linear combination of numerical, finite-range localized atomic orbitals. We also used the DFT+U method included in the code that allows a semi-empirical inclusion of electronic correlations in the description of electronic spectra for systems such as zinc oxide.
Resumo:
This work describes the structural and piezoelectric assessment of aluminum nitride (AlN) thin films deposited by pulsed-DC reactive sputtering on insulating substrates. We investigate the effect of different insulating seed layers on AlN properties (crystallinity, residual stress and piezoelectric activity). The seed layers investigated, silicon nitride (Si3N4), silicon dioxide (SiO2), amorphous tantalum oxide (Ta2O5), and amorphous or nano-crystalline titanium oxide (TiO2) are deposited on glass plates to a thickness lower than 100 nm. Before AlN films deposition, their surface is pre-treated with a soft ionic cleaning, either with argon or nitrogen ions. Only AlN films grown of TiO2 seed layers exhibit a significant piezoelectric activity to be used in acoustic device applications. Pure c-axis oriented films, with FWHM of rocking curve of 6º, stress below 500 MPa, and electromechanical coupling factors measured in SAW devices of 1.25% are obtained. The best AlN films are achieved on amorphous TiO2 seed layers deposited at high target power and low sputtering pressure. On the other hand, AlN films deposited on Si3N4, SiO2 and TaOx exhibit a mixed orientation, high stress and very low piezoelectric activity, which invalidate their use in acoustic devices.
Resumo:
En los últimos años es notable la proliferación de trabajos y estudios que tratan sobre las características del hormigón autocompactante. De ellos, la durabilidad es el aspecto menos tratado, siendo especialmente escasos los que se centran en un problema particular de esta durabilidad, como es la penetración de cloruros, un aspecto básico para todos los elementos estructurales sometidos a un ambiente marino. Esta será la línea básica del presente trabajo, que vendrá acompañada de otra serie de ensayo que permitan ratificar los resultados obtenidos. Debido a lo anteriormente expuesto, el objetivo general de esta investigación es estudiar la influencia de la adición de nano-sílice en aspectos tanto microestructurales como durables en hormigones autocompactantes. Dado que el objetivo general planteado es muy ambicioso y requiere tiempo y multitud de ensayos combinando numerosas variables, este trabajo de investigación se centra en los siguientes objetivos particulares dentro de la línea general de la investigación: Evaluar los cambios que se producen en las propiedades en estado fresco de los distintos hormigones ensayados; Evaluar los cambios que se producen en las propiedades mecánicas de los hormigones estudiados; Determinar los cambios de la matriz porosa de los distintos hormigones ensayados y determinar los cambios en los componentes hidratados de la matiz de cemento. Para cumplir con este objetivo, se ha procedido a comparar el comportamiento de cuatro tipos de hormigón con el mismo cemento: Un hormigón convencional sin adición, un hormigón autocompactante sin adición, un hormigón autocompactante con 2,5 % de adición de nano sílice y un hormigón autocompactante con 5 % de adición de nano sílice. Las etapas seguidas en este trabajo son las siguientes: Revisión bibliográfica relativa a los hormigones autocompactantes, y a la adición de nano-sílice.; Estudio y elección de las dosificaciones para los hormigones objeto de estudio: hormigón convencional, un hormigón autocompactante sin adiciones y hormigones autocompactantes con adición de nano-sílice; Evaluación de los hormigones, convencional y autocompactantes, en estado fresco en base a la normativa vigente y a las exigencias de la Instrucción del Hormigón Estructural (EHE-08); Evaluación de las propiedades mecánicas de los hormigones en estado endurecido mediante ensayo de resistencia a compresión; Caracterización microestructural de los hormigones mediante ensayos de porosimetría por intrusión de mercurio (PIM) y termoanálisis (TG-ATD); Evaluación del comportamiento de los hormigones frente a ensayos específicos enfocados a su durabilidad, como son los de resistividad eléctrica y de penetración de cloruros y estudio comparativo de los resultados obtenidos y establecimiento de relaciones entre la dosificación y el comportamiento de cada hormigón, de cara a poder fijar recomendaciones de uso.
Resumo:
El gran desarrollo industrial y demográfico de las últimas décadas ha dado lugar a un consumo crecientemente insostenible de energía y materias primas, que influye negativamente en el ambiente por la gran cantidad de contaminantes generados. Entre las emisiones tienen gran importancia los compuestos orgánicos volátiles (COV), y entre ellos los compuestos halogenados como el tricloroetileno, debido a su elevada toxicidad y resistencia a la degradación. Las tecnologías generalmente empleadas para la degradación de estos compuestos presentan inconvenientes derivados de la generación de productos tóxicos intermedios o su elevado coste. Dentro de los procesos avanzados de oxidación (Advanced Oxidation Processes AOP), la fotocatálisis resulta una técnica atractiva e innovadora de interés creciente en su aplicación para la eliminación de multitud de compuestos orgánicos e inorgánicos, y se ha revelado como una tecnología efectiva en la eliminación de compuestos orgánicos volátiles clorados como el tricloroetileno. Además, al poder aprovechar la luz solar como fuente de radiación UV permite una reducción significativa de costes energéticos y de operación. Los semiconductores más adecuados para su empleo como fotocatalizadores con aprovechamiento de la luz solar son aquellos que tienen una banda de energía comparable a la de los fotones de luz visible o, en su defecto, de luz ultravioleta A (Eg < 3,5 eV), siendo el más empleado el dióxido de titanio (TiO2). El objetivo principal de este trabajo es el estudio de polímeros orgánicos comerciales como soporte para el TiO2 en fotocatálisis heterogénea y su ensayo para la eliminación de tricloroetileno en aire. Para ello, se han evaluado sus propiedades ópticas y su resistencia a la fotodegradación, y se ha optimizado la fijación del fotocatalizador para conseguir un recubrimiento homogéneo, duradero y con elevada actividad fotocatalítica en diversas condiciones de operación. Los materiales plásticos ensayados fueron el polietileno (PE), copolímero de etil vinil acetato con distintos aditivos (EVA, EVA-H y EVA-SH), polipropileno (PP), polimetil (metacrilato) fabricado en colada y extrusión (PMMA-C y PMMA-E), policarbonato compacto y celular (PC-C y PC-Ce), polivinilo rígido y flexible (PVC-R y PVC-F), poliestireno (PS) y poliésteres (PET y PETG). En base a sus propiedades ópticas se seleccionaron el PP, PS, PMMA-C, EVA-SH y PVC-R, los cuales mostraron un valor de transmitancia superior al 80% en el entorno de la región estudiada (λ=365nm). Para la síntesis del fotocatalizador se empleó la tecnología sol-gel y la impregnación multicapa de los polímeros seleccionados por el método de dip-coating con secado intermedio a temperaturas moderadas. Con el fin de evaluar el envejecimiento de los polímeros bajo la radiación UV, y el efecto sobre éste del recubrimiento fotoactivo, se realizó un estudio en una cámara de exposición a la luz solar durante 150 días, evaluándose la resistencia química y la resistencia mecánica. Los resultados de espectroscopía infrarroja y del test de tracción tras el envejecimiento revelaron una mayor resistencia del PMMA y una degradación mayor en el PS, PVC-R y EVA SH, con una apreciable pérdida del recubrimiento en todos los polímeros. Los fotocatalizadores preparados sobre soportes sin tratamiento y con tres capas de óxido de titanio mostraron mejores resultados de actividad con PMMA-C, PET y PS, con buenos resultados de mineralización. Para conseguir una mayor y mejor fijación de la película al soporte se realizaron tratamientos químicos abrasivos con H2SO4 y NaOH y tratamientos de funcionalización superficial por tecnología de plasma a presión atmosférica (APP) y a baja presión (LPP). Con los tratamientos de plasma se consiguió una excelente mojabilidad de los soportes, que dio lugar a una distribución uniforme y más abundante del fotocatalizador, mientras que con los tratamientos químicos no se obtuvo una mejora significativa. Asimismo, se prepararon fotocatalizadores con una capa previa de dióxido de silicio con la intervención de surfactantes (PDDA-SiO2-3TiO2 y SiO2FC-3TiO2), consiguiéndose buenas propiedades de la película en todos los casos. Los mejores resultados de actividad con tratamiento LPP y tres capas de TiO2 se lograron con PMMA-C (91% de conversión a 30 ppm de TCE y caudal 200 ml·min-1) mejorando significativamente también la actividad fotocatalítica en PVC-R y PS. Sin embargo, el material más activo de todos los ensayados fue el PMMA-C con el recubrimiento SiO2FC-3TiO2, logrando el mejor grado de mineralización, del 45%, y una velocidad de 1,89 x 10-6 mol· m-2 · s-1, que dio lugar a la eliminación del 100 % del tricloroetileno en las condiciones anteriormente descritas. A modo comparativo se realizaron ensayos de actividad con otro contaminante orgánico tipo, el formaldehído, cuya degradación fotocatalítica fue también excelente (100% de conversión y 80% de mineralización con 24 ppm de HCHO en un caudal de aire seco de 200 ml·min-1). Los buenos resultados de actividad obtenidos confirman las enormes posibilidades que ofrecen los polímeros transparentes en el UV-A como soportes del dióxido de titanio para la eliminación fotocatalítica de contaminantes en aire. ABSTRACT The great industrial and demographic development of recent decades has led to an unsustainable increase of energy and raw materials consumption that negatively affects the environment due to the large amount of waste and pollutants generated. Between emissions generated organic compounds (VOCs), specially the halogenated ones such as trichloroethylene, are particularly important due to its high toxicity and resistance to degradation. The technologies generally used for the degradation of these compounds have serious inconveniences due to the generation of toxic intermediates turn creating the problem of disposal besides the high cost. Among the advanced oxidation processes (AOP), photocatalysis is an attractive and innovative technique with growing interest in its application for the removal of many organic and inorganic compounds, and has emerged as an effective technology in eliminating chlorinated organic compounds such as trichloroethylene. In addition, as it allows the use of sunlight as a source of UV radiation there is a significant reduction of energy costs and operation. Semiconductors suitable to be used as photocatalyst activated by sunlight are those having an energy band comparable to that of the visible or UV-A light (Eg <3,5 eV), being titanium dioxide (TiO2), the most widely used. The main objective of this study is the test of commercial organic polymers as supports for TiO2 to be applied in heterogeneous photocatalysis and its assay for removing trichloroethylene in air. To accomplish that, its optical properties and resistance to photooxidation have been evaluated, and different operating conditions have been tested in order to optimize the fixation of the photocatalyst to obtain a homogeneous coating, with durable and high photocatalytic activity. The plastic materials tested were: polyethylene (PE), ethyl vinyl acetace copolymers with different additives (EVA, EVA-H and EVA -SH), polypropylene (PP), poly methyl (methacrylate) manufactured by sheet moulding and extrusion (PMMA-C and PMMA-E), compact and cellular polycarbonates (PC-C PC-Ce), rigid and flexible polyvinyl chloride (PVC-R and PVC-F), polystyrene (PS) and polyesters (PET and PETG). On the basis of their optical properties PP, PS, PMMA-C, EVA-SH and PVC-R were selected, as they showed a transmittance value greater than 80% in the range of the studied region (λ = 365nm). For the synthesis of the photocatalyst sol-gel technology was employed with multilayers impregnation of the polymers selected by dip-coating, with intermediate TiO2 drying at moderate temperatures. To evaluate the polymers aging due to UV radiation, and the effect of photoactive coating thereon, a study in an sunlight exposure chamber for 150 days was performed, evaluating the chemical resistance and the mechanical strength. The results of infrared spectroscopy and tensile stress test after aging showed the PMMA is the most resistant sample, but a greater degradation in PS, PVC-R and EVA SH, with a visible loss of the coating in all the polymers tested. The photocatalysts prepared on the untreated substrates with three layers of TiO2 showed better activity results when PMMA-C, PET and PS where used. To achieve greater and better fixation of the film to the support, chemical abrasive treatments, with H2SO4 and NaOH, as well as surface functionalization treatments with atmospheric pressure plasma (APP) and low pressure plasma (LPP) technologies were performed. The plasma treatment showed the best results, with an excellent wettability of the substrates that lead to a better and uniform distribution of the photocatalyst compared to the chemical treatments tested, in which no significant improvement was obtained. Also photocatalysts were prepared with the a silicon dioxide previous layer with the help of surfactants (SiO2- 3TiO2 PDDA-and-3TiO2 SiO2FC), obtaining good properties of the film in all cases. The best activity results for LPP-treated samples with three layers of TiO2 were achieved with PMMA-C (91% conversion, in conditions of 30 ppm of TCE and 200 ml·min-1 air flow rate), with a significant improvement of the photocatalytic activity in PVC-R and PS samples too. However, among all the materials assayed, PMMA-C with SiO2FC-3TiO2 coating was the most active one, achieving the highest mineralization grade (45%) and a reaction rate of 1,89 x 10-6 mol· m-2 · s-1, with total trichloroethylene elimination in the same conditions. As a comparative assay, an activity test was also performed with another typical organic contaminant, formaldehyde, also with good results (100% conversion with 24 ppm of HCHO and 200 ml·min-1 gas flow rate). The good activity results obtained in this study confirm the great potential of organic polymers which are transparent in the UV-A as supports for titanium dioxide for photocatalytic removal of air organic pollutants.
Resumo:
E-beam lithography was used to pattern a titanium mask on a GaN substrate with ordered arrays of nanoholes. This patterned mask served as a template for the subsequent ordered growth of GaN/InGaN nanorods by plasma-assisted molecular beam epitaxy. The mask patterning process was optimized for several holes configurations. The smallest holes were 30 nm in diameter with a pitch (center-to-center distance) of 100 nm only. High quality masks of several geometries were obtained that could be used to grow ordered GaN/InGaN nanorods with full selectivity (growth localized inside the nanoholes only) over areas of hundreds of microns. Although some parasitic InGaN growth occurred between the nanorods during the In incorporation, transmission electron microscopy and photoluminescence measurements demonstrated that these ordered nanorods exhibit high crystal quality and reproducible optical properties.
Resumo:
This work reports on the morphology control of the selective area growth of GaN-based nanostructures on c-plane GaN templates. By decreasing the substrate temperature, the nanostructures morphology changes from pyramidal islands (no vertical m-planes), to GaN nanocolumns with top semipolar r-planes, and further to GaN nanocolumns with top polar c-planes. When growing InGaN nano-disks embedded into the GaN nanocolumns, the different morphologies mentioned lead to different optical properties, due to the semi-polar and polar nature of the r-planes and c-planes involved. These differences are assessed by photoluminescence measurements at low temperature and correlated to the specific nano-disk geometry.