829 resultados para NETWORK MODEL


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based oil rare equations of semiconductor laser, a symbolically-defined model for optical transmission system performance evaluation and network characterization in both time- and frequency domains is presented. The steady-state and small-signal characteristics, such as current-photon density curve, current-voltage curve, and input impedance, call be predicted from this model. Two important dynamic characteristics, second-order harmonic distortion and two-tone third-order intermodulation products, are evaluated under different driving conditions. Experiments show that the simulated results agree well with the published data. (c) 2007 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A design algorithm of an associative memory neural network is proposed. The benefit of this design algorithm is to make the designed associative memory model can implement the hoped situation. On the one hand, the designed model has realized the nonlinear association of infinite value pattern from n dimension space to m dimension space. The result has improved the ones of some old associative memory neural network. On the other hand, the memory samples are in the centers of the fault-tolerant. In average significance the radius of the memory sample fault-tolerant field is maximum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

First, the compression-awaited data are regarded Lis character strings which are produced by virtual information source mapping M. then the model of the virtual information source M is established by neural network and SVM. Last we construct a lossless data compression (coding) scheme based oil neural network and SVM with the model, an integer function and a SVM discriminant. The scheme differs from the old entropy coding (compressions) inwardly, and it can compress some data compressed by the old entropy coding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formulation of a 16-term error model, based on the four-port ABCD-matrix and voltage and current variables, is outlined. Matrices A, B, C, and D are each 2 x 2 submatrices of the complete 4 x 4 error matrix. The corresponding equations are linear in terms of the error parameters, which simplifies the calibration process. The parallelism with the network analyzer calibration procedures and the requirement of five two-port calibration measurements are stressed. Principles for robust choice of equations are presented. While the formulation is suitable for any network analyzer measurement, it is expected to be a useful alternative for the nonlinear y-parameter approach used in intrinsic semiconductor electrical and noise parameter measurements and parasitics' deembedding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enzymatic hydrolysis of cellulose was highly complex because of the unclear enzymatic mechanism and many factors that affect the heterogeneous system. Therefore, it is difficult to build a theoretical model to study cellulose hydrolysis by cellulase. Artificial neural network (ANN) was used to simulate and predict this enzymatic reaction and compared with the response surface model (RSM). The independent variables were cellulase amount X-1, substrate concentration X-2, and reaction time X-3, and the response variables were reducing sugar concentration Y-1 and transformation rate of the raw material Y-2. The experimental results showed that ANN was much more suitable for studying the kinetics of the enzymatic hydrolysis than RSM. During the simulation process, relative errors produced by the ANN model were apparently smaller than that by RSM except one and the central experimental points. During the prediction process, values produced by the ANN model were much closer to the experimental values than that produced by RSM. These showed that ANN is a persuasive tool that can be used for studying the kinetics of cellulose hydrolysis catalyzed by cellulase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new theoretical model of Pattern Recognition principles was proposed, which is based on "matter cognition" instead of "matter classification" in traditional statistical Pattern Recognition. This new model is closer to the function of human being, rather than traditional statistical Pattern Recognition using "optimal separating" as its main principle. So the new model of Pattern Recognition is called the Biomimetic Pattern Recognition (BPR)(1). Its mathematical basis is placed on topological analysis of the sample set in the high dimensional feature space. Therefore, it is also called the Topological Pattern Recognition (TPR). The fundamental idea of this model is based on the fact of the continuity in the feature space of any one of the certain kinds of samples. We experimented with the Biomimetic Pattern Recognition (BPR) by using artificial neural networks, which act through covering the high dimensional geometrical distribution of the sample set in the feature space. Onmidirectionally cognitive tests were done on various kinds of animal and vehicle models of rather similar shapes. For the total 8800 tests, the correct recognition rate is 99.87%. The rejection rate is 0.13% and on the condition of zero error rates, the correct rate of BPR was much better than that of RBF-SVM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We developed a stable, sensitive electrochemiluminescence (ECL) biosensor based on the synthesis of a new sol-gel material with the ion-exchange capacity sol-gel to coimmobilize the Ru(bpy)(3)(2+) and enzyme. The partial sulfonated (3-mercaptopropyl)-trimethoxysilane sol-gel (PSSG) film acted as both an ion exchanger for the immobilization of Ru(bpy)(3)(2+) and a matrix to immobilize gold nanoparticles (AuNPs). The AuNPs/PSSG/Ru(bpy)(3)(2+) film modified electrode allowed sensitive the ECL detection of NADH as low as 1 nM. Such an ability of AuNPs/PSSG/Ru(bpy)(3)(2+) film to promote the electron transfer between Ru(bpy)(3)(2+) and the electrode suggested a new, promising biocompatible platform for the development of dehydrogenase-based ECL biosensors. With alcohol dehydrogenase (ADH) as a model, we then constructed an ethanol biosensor, which had a linear range of 5 mu M to 5.2 mM with a detection limit of 12 nM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the origin of robustness of yeast cell cycle cellular network through uncovering its underlying energy landscape. This is realized from the information of the steady-state probabilities by solving a discrete set of kinetic master equations for the network. We discovered that the potential landscape of yeast cell cycle network is funneled toward the global minimum, G1 state. The ratio of the energy gap between G1 and average versus roughness of the landscape termed as robustness ratio ( RR) becomes a quantitative measure of the robustness and stability for the network. The funneled landscape is quite robust against random perturbations from the inherent wiring or connections of the network. There exists a global phase transition between the more sensitive response or less self-degradation phase leading to underlying funneled global landscape with large RR, and insensitive response or more self-degradation phase leading to shallower underlying landscape of the network with small RR. Furthermore, we show that the more robust landscape also leads to less dissipation cost of the network. Least dissipation and robust landscape might be a realization of Darwinian principle of natural selection at cellular network level. It may provide an optimal criterion for network wiring connections and design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The correlation between mechanical relaxation and ionic conductivity was investigated in a two-component epoxy network-LiClO4 electrolyte system. The network was composed of diglycidyl ether of polyethylene glycol (DGEPEG) and triglycidyl ether of glycerol (TGEG). The effects of salt concentration, molecular weight of PEG in DGEPEG and the proportion of DGEPEG (1000) in DGEPEG/TGEG ratio on the ionic conductivity and the mechanical relaxation of the system were studied. It was found that, among the three influential factors, the former reinforces the network chains, reduces the free volume fraction and thus increases the relaxation time of the segmental motion, which in turn lowers the ionic conductivity of the specimen. Conversely, the latter two increase the free volume and thus the chain flexibility, showing an opposite effect. From the iso-free-volume plot of the shift factor log at and reduced ionic conductivity, it is noted that the plot can be used to examine the temperature dependence of segmental mobility and seems to be useful to judge whether the incorporated salt has been dissociated completely. Besides, the ionic conductivity and relaxation time at constant reference temperature are linearly correlated with each other in all the three cases. This result gives an additional experimental confirmation of the coordinated motion model of the ionic hopping with the moving polymer chain segment, which is generally used to explain the ionic conduction in non-glassy amorphous polymer electrolytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new model is proposed to estimate the significant wave heights with ERS-1/2 scatterometer data. The results show that the relationship between wave parameters and radar backscattering cross section is similar to that between wind and the radar backscattering cross section. Therefore, the relationship between significant wave height and the radar backscattering cross section is established with a neural network algorithm, which is, if the average wave period is <= 7s, the root mean square of significant wave height retrieved from ERS-1/2 data is 0.51 m, or 0.72 m if it is >7s otherwise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present an approach to discretizing multivariate continuous data while learning the structure of a graphical model. We derive the joint scoring function from the principle of predictive accuracy, which inherently ensures the optimal trade-off between goodness of fit and model complexity (including the number of discretization levels). Using the so-called finest grid implied by the data, our scoring function depends only on the number of data points in the various discretization levels. Not only can it be computed efficiently, but it is also independent of the metric used in the continuous space. Our experiments with gene expression data show that discretization plays a crucial role regarding the resulting network structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present methods of calculating the value of two performance parameters for multipath, multistage interconnection networks: the normalized throughput and the probability of successful message transmission. We develop a set of exact equations for the loading probability mass functions of network channels and a program for solving them exactly. We also develop a Monte Carlo method for approxmiate solution of the equations, and show that the resulting approximation method will always calculate the values of the performance parameters more quickly than direct simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P-glycoprotein (P-gp), an ATP-binding cassette (ABC) transporter, functions as a biological barrier by extruding cytotoxic agents out of cells, resulting in an obstacle in chemotherapeutic treatment of cancer. In order to aid in the development of potential P-gp inhibitors, we constructed a quantitative structure-activity relationship (QSAR) model of flavonoids as P-gp inhibitors based on Bayesian-regularized neural network (BRNN). A dataset of 57 flavonoids collected from a literature binding to the C-terminal nucleotide-binding domain of mouse P-gp was compiled. The predictive ability of the model was assessed using a test set that was independent of the training set, which showed a standard error of prediction of 0.146 +/- 0.006 (data scaled from 0 to 1). Meanwhile, two other mathematical tools, back-propagation neural network (BPNN) and partial least squares (PLS) were also attempted to build QSAR models. The BRNN provided slightly better results for the test set compared to BPNN, but the difference was not significant according to F-statistic at p = 0.05. The PLS failed to build a reliable model in the present study. Our study indicates that the BRNN-based in silico model has good potential in facilitating the prediction of P-gp flavonoid inhibitors and might be applied in further drug design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work comprises a new theoretical development applied to aid decision making in an increasingly important commercial sector. Agile supply, where small volumes of high margin, short life cycle innovative products are offered, is increasingly carried out through a complex global supply chain network. We outline an equilibrium solution in such a supply chain network, which works through limited cooperation and coordination along edges (links) in the network. The links constitute the stochastic modelling entities rather than the nodes of the network. We utilise newly developed phase plane analysis to identify, model and predict characteristic behaviour in supply chain networks. The phase plane charts profile the flow of inventory and identify out of control conditions. They maintain quality within the network, as well as intelligently track the way the network evolves in conditions of changing variability. The methodology is essentially distribution free, relying as it does on the study of forecasting errors, and can be used to examine contractual details as well as strategic and game theoretical concepts between decision-making components (agents) of a network. We illustrate with typical data drawn from supply chain agile fashion products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper outlines a novel information sharing method using Binary Decision Diagrams (BBDs). It is inspired by the work of Al-Shaer and Hamed, who applied BDDs into the modelling of network firewalls. This is applied into an information sharing policy system which optimizes the search of redundancy, shadowing, generalisation and correlation within information sharing rules.