771 resultados para Multi-relational data mining
Resumo:
Learning disability (LD) is a neurological condition that affects a child’s brain and impairs his ability to carry out one or many specific tasks. LD affects about 10% of children enrolled in schools. There is no cure for learning disabilities and they are lifelong. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. Just as there are many different types of LDs, there are a variety of tests that may be done to pinpoint the problem The information gained from an evaluation is crucial for finding out how the parents and the school authorities can provide the best possible learning environment for child. This paper proposes a new approach in artificial neural network (ANN) for identifying LD in children at early stages so as to solve the problems faced by them and to get the benefits to the students, their parents and school authorities. In this study, we propose a closest fit algorithm data preprocessing with ANN classification to handle missing attribute values. This algorithm imputes the missing values in the preprocessing stage. Ignoring of missing attribute values is a common trend in all classifying algorithms. But, in this paper, we use an algorithm in a systematic approach for classification, which gives a satisfactory result in the prediction of LD. It acts as a tool for predicting the LD accurately, and good information of the child is made available to the concerned
Resumo:
Learning Disability (LD) is a classification including several disorders in which a child has difficulty in learning in a typical manner, usually caused by an unknown factor or factors. LD affects about 15% of children enrolled in schools. The prediction of learning disability is a complicated task since the identification of LD from diverse features or signs is a complicated problem. There is no cure for learning disabilities and they are life-long. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. The aim of this paper is to develop a new algorithm for imputing missing values and to determine the significance of the missing value imputation method and dimensionality reduction method in the performance of fuzzy and neuro fuzzy classifiers with specific emphasis on prediction of learning disabilities in school age children. In the basic assessment method for prediction of LD, checklists are generally used and the data cases thus collected fully depends on the mood of children and may have also contain redundant as well as missing values. Therefore, in this study, we are proposing a new algorithm, viz. the correlation based new algorithm for imputing the missing values and Principal Component Analysis (PCA) for reducing the irrelevant attributes. After the study, it is found that, the preprocessing methods applied by us improves the quality of data and thereby increases the accuracy of the classifiers. The system is implemented in Math works Software Mat Lab 7.10. The results obtained from this study have illustrated that the developed missing value imputation method is very good contribution in prediction system and is capable of improving the performance of a classifier.
Resumo:
Learning Disability (LD) is a neurological condition that affects a child’s brain and impairs his ability to carry out one or many specific tasks. LD affects about 15 % of children enrolled in schools. The prediction of LD is a vital and intricate job. The aim of this paper is to design an effective and powerful tool, using the two intelligent methods viz., Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System, for measuring the percentage of LD that affected in school-age children. In this study, we are proposing some soft computing methods in data preprocessing for improving the accuracy of the tool as well as the classifier. The data preprocessing is performed through Principal Component Analysis for attribute reduction and closest fit algorithm is used for imputing missing values. The main idea in developing the LD prediction tool is not only to predict the LD present in children but also to measure its percentage along with its class like low or minor or major. The system is implemented in Mathworks Software MatLab 7.10. The results obtained from this study have illustrated that the designed prediction system or tool is capable of measuring the LD effectively
Resumo:
In our study we use a kernel based classification technique, Support Vector Machine Regression for predicting the Melting Point of Drug – like compounds in terms of Topological Descriptors, Topological Charge Indices, Connectivity Indices and 2D Auto Correlations. The Machine Learning model was designed, trained and tested using a dataset of 100 compounds and it was found that an SVMReg model with RBF Kernel could predict the Melting Point with a mean absolute error 15.5854 and Root Mean Squared Error 19.7576
Resumo:
The towed array electronics is essentially a multichannel real time data acquisition system. The major challenges involved in it are the simultaneous acquisition of data from multiple channels, telemetry of the data over tow cable (several kilometres in some systems) and synchronization with the onboard receiver for accurate reconstruction. A serial protocol is best suited to transmit the data to onboard electronics since number of wires inside the tow cable is limited. The best transmission medium for data over large distances is the optical fibre. In this a two step approach towards the realization of a reliable telemetry scheme for the sensor data using standard protocols is described. The two schemes are discussed in this paper. The first scheme is for conversion of parallel, time-multiplexed multi-sensor data to Ethernet. Existing towed arrays can be upgraded to ethernet using this scheme. Here the last lap of the transmission is by Ethernet over Fibre. For the next generation of towed arrays it is required to digitize and convert the data to ethernet close to the sensor. This is the second scheme. At the heart of this design is the Analog-to-Ethernet node. In addition to a more reliable interface, this helps in easier fault detection and firmware updates in the field for the towed arrays. The design challenges and considerations for incorporating a network of embedded devices within the array are highlighted
Resumo:
Many recent Web 2.0 resource sharing applications can be subsumed under the "folksonomy" moniker. Regardless of the type of resource shared, all of these share a common structure describing the assignment of tags to resources by users. In this report, we generalize the notions of clustering and characteristic path length which play a major role in the current research on networks, where they are used to describe the small-world effects on many observable network datasets. To that end, we show that the notion of clustering has two facets which are not equivalent in the generalized setting. The new measures are evaluated on two large-scale folksonomy datasets from resource sharing systems on the web.
Resumo:
Knowledge discovery support environments include beside classical data analysis tools also data mining tools. For supporting both kinds of tools, a unified knowledge representation is needed. We show that concept lattices which are used as knowledge representation in Conceptual Information Systems can also be used for structuring the results of mining association rules. Vice versa, we use ideas of association rules for reducing the complexity of the visualization of Conceptual Information Systems.
Resumo:
Einhergehend mit der Entwicklung und zunehmenden Verfügbarkeit des Internets hat sich die Art der Informationsbereitstellung und der Informationsbeschaffung deutlich geändert. Die einstmalige Trennung zwischen Publizist und Konsument wird durch kollaborative Anwendungen des sogenannten Web 2.0 aufgehoben, wo jeder Teilnehmer gleichsam Informationen bereitstellen und konsumieren kann. Zudem können Einträge anderer Teilnehmer erweitert, kommentiert oder diskutiert werden. Mit dem Social Web treten schließlich die sozialen Beziehungen und Interaktionen der Teilnehmer in den Vordergrund. Dank mobiler Endgeräte können zu jeder Zeit und an nahezu jedem Ort Nachrichten verschickt und gelesen werden, neue Bekannschaften gemacht oder der aktuelle Status dem virtuellen Freundeskreis mitgeteilt werden. Mit jeder Aktivität innerhalb einer solchen Applikation setzt sich ein Teilnehmer in Beziehung zu Datenobjekten und/oder anderen Teilnehmern. Dies kann explizit geschehen, indem z.B. ein Artikel geschrieben wird und per E-Mail an Freunde verschickt wird. Beziehungen zwischen Datenobjekten und Nutzern fallen aber auch implizit an, wenn z.B. die Profilseite eines anderen Teilnehmers aufgerufen wird oder wenn verschiedene Teilnehmer einen Artikel ähnlich bewerten. Im Rahmen dieser Arbeit wird ein formaler Ansatz zur Analyse und Nutzbarmachung von Beziehungsstrukturen entwickelt, welcher auf solchen expliziten und impliziten Datenspuren aufbaut. In einem ersten Teil widmet sich diese Arbeit der Analyse von Beziehungen zwischen Nutzern in Applikationen des Social Web unter Anwendung von Methoden der sozialen Netzwerkanalyse. Innerhalb einer typischen sozialen Webanwendung haben Nutzer verschiedene Möglichkeiten zu interagieren. Aus jedem Interaktionsmuster werden Beziehungsstrukturen zwischen Nutzern abgeleitet. Der Vorteil der impliziten Nutzer-Interaktionen besteht darin, dass diese häufig vorkommen und quasi nebenbei im Betrieb des Systems abfallen. Jedoch ist anzunehmen, dass eine explizit angegebene Freundschaftsbeziehung eine stärkere Aussagekraft hat, als entsprechende implizite Interaktionen. Ein erster Schwerpunkt dieser Arbeit ist entsprechend der Vergleich verschiedener Beziehungsstrukturen innerhalb einer sozialen Webanwendung. Der zweite Teil dieser Arbeit widmet sich der Analyse eines der weit verbreitetsten Profil-Attributen von Nutzern in sozialen Webanwendungen, dem Vornamen. Hierbei finden die im ersten Teil vorgestellten Verfahren und Analysen Anwendung, d.h. es werden Beziehungsnetzwerke für Namen aus Daten von sozialen Webanwendungen gewonnen und mit Methoden der sozialen Netzwerkanalyse untersucht. Mithilfe externer Beschreibungen von Vornamen werden semantische Ähnlichkeiten zwischen Namen bestimmt und mit jeweiligen strukturellen Ähnlichkeiten in den verschiedenen Beziehungsnetzwerken verglichen. Die Bestimmung von ähnlichen Namen entspricht in einer praktischen Anwendung der Suche von werdenden Eltern nach einem passenden Vornamen. Die Ergebnisse zu der Analyse von Namensbeziehungen sind die Grundlage für die Implementierung der Namenssuchmaschine Nameling, welche im Rahmen dieser Arbeit entwickelt wurde. Mehr als 35.000 Nutzer griffen innerhalb der ersten sechs Monate nach Inbetriebnahme auf Nameling zu. Die hierbei anfallenden Nutzungsdaten wiederum geben Aufschluss über individuelle Vornamenspräferenzen der Anwender. Im Rahmen dieser Arbeit werden diese Nutzungsdaten vorgestellt und zur Bestimmung sowie Bewertung von personalisierten Vornamensempfehlungen verwendet. Abschließend werden Ansätze zur Diversifizierung von personalisierten Vornamensempfehlungen vorgestellt, welche statische Beziehungsnetzwerke für Namen mit den individuellen Nutzungsdaten verknüpft.
Resumo:
Presentation at the 1997 Dagstuhl Seminar "Evaluation of Multimedia Information Retrieval", Norbert Fuhr, Keith van Rijsbergen, Alan F. Smeaton (eds.), Dagstuhl Seminar Report 175, 14.04. - 18.04.97 (9716). - Abstract: This presentation will introduce ESCHER, a database editor which supports visualization in non-standard applications in engineering, science, tourism and the entertainment industry. It was originally based on the extended nested relational data model and is currently extended to include object-relational properties like inheritance, object types, integrity constraints and methods. It serves as a research platform into areas such as multimedia and visual information systems, QBE-like queries, computer-supported concurrent work (CSCW) and novel storage techniques. In its role as a Visual Information System, a database editor must support browsing and navigation. ESCHER provides this access to data by means of so called fingers. They generalize the cursor paradigm in graphical and text editors. On the graphical display, a finger is reflected by a colored area which corresponds to the object a finger is currently pointing at. In a table more than one finger may point to objects, one of which is the active finger and is used for navigating through the table. The talk will mostly concentrate on giving examples for this type of navigation and will discuss some of the architectural needs for fast object traversal and display. ESCHER is available as public domain software from our ftp site in Kassel. The portable C source can be easily compiled for any machine running UNIX and OSF/Motif, in particular our working environments IBM RS/6000 and Intel-based LINUX systems. A porting to Tcl/Tk is under way.
Resumo:
Fine-grained parallel machines have the potential for very high speed computation. To program massively-concurrent MIMD machines, programmers need tools for managing complexity. These tools should not restrict program concurrency. Concurrent Aggregates (CA) provides multiple-access data abstraction tools, Aggregates, which can be used to implement abstractions with virtually unlimited potential for concurrency. Such tools allow programmers to modularize programs without reducing concurrency. I describe the design, motivation, implementation and evaluation of Concurrent Aggregates. CA has been used to construct a number of application programs. Multi-access data abstractions are found to be useful in constructing highly concurrent programs.
Resumo:
Co-training is a semi-supervised learning method that is designed to take advantage of the redundancy that is present when the object to be identified has multiple descriptions. Co-training is known to work well when the multiple descriptions are conditional independent given the class of the object. The presence of multiple descriptions of objects in the form of text, images, audio and video in multimedia applications appears to provide redundancy in the form that may be suitable for co-training. In this paper, we investigate the suitability of utilizing text and image data from the Web for co-training. We perform measurements to find indications of conditional independence in the texts and images obtained from the Web. Our measurements suggest that conditional independence is likely to be present in the data. Our experiments, within a relevance feedback framework to test whether a method that exploits the conditional independence outperforms methods that do not, also indicate that better performance can indeed be obtained by designing algorithms that exploit this form of the redundancy when it is present.
Resumo:
This work provides a general description of the multi sensor data fusion concept, along with a new classification of currently used sensor fusion techniques for unmanned underwater vehicles (UUV). Unlike previous proposals that focus the classification on the sensors involved in the fusion, we propose a synthetic approach that is focused on the techniques involved in the fusion and their applications in UUV navigation. We believe that our approach is better oriented towards the development of sensor fusion systems, since a sensor fusion architecture should be first of all focused on its goals and then on the fused sensors
Resumo:
Recommender systems attempt to predict items in which a user might be interested, given some information about the user's and items' profiles. Most existing recommender systems use content-based or collaborative filtering methods or hybrid methods that combine both techniques (see the sidebar for more details). We created Informed Recommender to address the problem of using consumer opinion about products, expressed online in free-form text, to generate product recommendations. Informed recommender uses prioritized consumer product reviews to make recommendations. Using text-mining techniques, it maps each piece of each review comment automatically into an ontology
Resumo:
Consumer reviews, opinions and shared experiences in the use of a product is a powerful source of information about consumer preferences that can be used in recommender systems. Despite the importance and value of such information, there is no comprehensive mechanism that formalizes the opinions selection and retrieval process and the utilization of retrieved opinions due to the difficulty of extracting information from text data. In this paper, a new recommender system that is built on consumer product reviews is proposed. A prioritizing mechanism is developed for the system. The proposed approach is illustrated using the case study of a recommender system for digital cameras