Informed recommender: basing recommendations on consumer product reviews


Autoria(s): Aciar, Silvana Vanesa; Zhang, Debbie; Simoff, Simeon; Debenham, John
Data(s)

2007

Resumo

Recommender systems attempt to predict items in which a user might be interested, given some information about the user's and items' profiles. Most existing recommender systems use content-based or collaborative filtering methods or hybrid methods that combine both techniques (see the sidebar for more details). We created Informed Recommender to address the problem of using consumer opinion about products, expressed online in free-form text, to generate product recommendations. Informed recommender uses prioritized consumer product reviews to make recommendations. Using text-mining techniques, it maps each piece of each review comment automatically into an ontology

Formato

application/pdf

Identificador

Aciar, S., Zhang, D., Simoff, S., i Debenham, J. (2007). Informed Recommender: Basing Recommendations on Consumer Product Reviews. IEEE Intelligent Systems, 22, 3, 39-47. Recuperat 08 juny 2010, a http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4216979

1541-1672

http://hdl.handle.net/10256/2554

http://dx.doi.org/10.1109/MIS.2007.55

Idioma(s)

eng

Publicador

IEEE

Relação

Reproducció digital del document publicat a: http://dx.doi.org/10.1109/MIS.2007.55

© IEEE Intelligent Systems, 2007, vol. 22, p. 39-47

Articles publicats (D-EEEiA)

Direitos

Tots els drets reservats

Palavras-Chave #Béns de consum #Comerç electrònic #Mineria de dades #Consumer goods #Electronic commerce #Data mining
Tipo

info:eu-repo/semantics/article