989 resultados para Minnesota. Compensation Insurance Board.
Resumo:
We report a novel technique to broaden and reshape the spectrum of picosecond laser pulse based on the seeder of gain switch laser diode and Yb(3+)-doped fiber amplifier (YDFA). From compensating the seed spectrum with the gain of YDFA, the seed pulse of 7 nm bandwidth is broadened to 20 nm, and the flat top spectral shape is obtained as well. A self-made fiber coupled tunable filter is used to realize the tunable output laser with the wavelength range from 1053 nm to 1073 nm and the line width of 1.4 nm.
Resumo:
The use of alpha-power chirped fiber Bragg gratings for dispersion cancellation in an optical fiber link is discussed. Numerical and theoretical investigation of recompressing the dispersion-broadened pulse by using alpha-power chirped gratings is made, which shows that, the dispersion-broadened Gaussian pulse after 100 km standard fiber (with zero dispersion at lambda = 1.3 mu m) trnasmission at lambda = 1.55 mu m with initial width of T-FWHM = 33ps (full width at half maximum) can be perfectly recompressed with the peak reflectivity of 82% by using a 30 mm long alpha-power chirped fiber grating with proper a value and optimal grating parameters.
Resumo:
This paper proposes a fast-settling frequency-presetting PLL frequency synthesizer. A mixed-signal VCO and a digital processor are developed to accurately preset the frequency of VCO and greatly reduce the settling time. An auxiliary tuning loop is introduced in order to reduce reference spur caused by leakage current. The digital processor can automatically compensate presetting frequency variation with process and temperature, and control the operation of the auxiliary tuning loop. A 1.2 GHz integer-N synthesizer with 1 MHz reference input Was implemented in a 0.18μm process. The measured results demonstrate that the typical settling time of the synthesizer is less than 3μs,and the phase noise is -108 dBc/Hz@1MHz.The reference spur is -52 dBc.
Resumo:
We have experimentally demonstrated pulses 0.4 mJ in duration smaller than 12 fs with an excellent spatial beam profile by self-guided propagation in argon. The original 52 fs pulses from the chirped pulsed amplification laser system are first precompressed to 32 fs by inserting an acoustic optical programmable dispersive filter instrument into the laser system for spectrum reshaping and dispersion compensation, and the pulse spectrum is subsequently broadened by filamentation in an argon cell. By using chirped mirrors for post-dispersion compensation, the pulses are successfully compressed to smaller than 12 fs.
Resumo:
Respiration-induced target motion is a major problem in intensity-modulated radiation therapy. Beam segments are delivered serially to form the total dose distribution. In the presence of motion, the spatial relation between dose deposition from different segments will be lost. Usually, this results in over-and underdosage. Besides such interplay effects between target motion and dynamic beam delivery as known from photon therapy, changes in internal density have an impact on delivered dose for intensity-modulated charged particle therapy. In this study, we have analysed interplay effects between raster scanned carbon ion beams and target motion. Furthermore, the potential of an online motion strategy was assessed in several simulations. An extended version of the clinical treatment planning software was used to calculate dose distributions to moving targets with and without motion compensation. For motion compensation, each individual ion pencil beam tracked the planned target position in the lateral aswell as longitudinal direction. Target translations and rotations, including changes in internal density, were simulated. Target motion simulating breathing resulted in severe degradation of delivered dose distributions. For example, for motion amplitudes of +/- 15 mm, only 47% of the target volume received 80% of the planned dose. Unpredictability of resulting dose distributions was demonstrated by varying motion parameters. On the other hand, motion compensation allowed for dose distributions for moving targets comparable to those for static targets. Even limited compensation precision (standard deviation similar to 2 mm), introduced to simulate possible limitations of real-time target tracking, resulted in less than 3% loss in dose homogeneity.
Resumo:
It has been found that charge compensated CaMoO4:Eu3+ phosphors show greatly enhanced red emission under 393 and 467 nm-excitation, compared with CaMoO4:Eu3+ without charge compensation. Two approaches to charge compensation, (a) 2Ca(2+) -> EU3+ + M+, where M+ is a monovalent cation like Li+, Na+ and K+ acting as a charge compensator; (b) 3Ca(2+) -> 2EU(3+) + vacancy, are investigated. The influence of sintering temperature and Eu3+ concentration on the luminescent property of phosphor samples is also discussed.
Resumo:
The effect of the context of the flanking sequence on ligand binding to DNA oligonucleotides that contain consensus binding sites was investigated for the binding of the intercalator 7-amino actinomycin D. Seven self-complementary DNA oligomers each containing a centrally located primary binding site, 5'-A-G-C-T-3', flanked on either side by the sequences (AT)(n) or (AA)(n) (with n = 2, 3, 4) and AA(AT)(2), were studied. For different flanking sequences, (AA)(n)-series or (AT)(n)-series, differential fluorescence enhancements of the ligand due to binding were observed. Thermodynamic studies indicated that the flanking sequences not only affected DNA stability and secondary structure but also modulated ligand binding to the primary binding site. The magnitude of the ligand binding affinity to the primary site was inversely related to the sequence dependent stability. The enthalpy of ligand binding was directly measured by isothermal titration calorimetry, and this made it possible to parse the binding free energy into its energetic and entropic terms.
Resumo:
The excitation and emission spectra of the BaLiF3:Ce3+ phosphors synthesized through solid state reaction have been measured. By investigating the properties of the excitation spectra we point out that the variation in the excitation spectra with the amount of CeF3 dopant results from the different patterns of charge compensation in the matrices. The vacancies of Li+ ions are the favorable charge compensation pattern at low concentration of CeF3 doped, but interstitial F- ions are the major charge compensation pattern when the concentration of CeF3 doped goes beyond a certain value. (C) 2000 Academic Press
Resumo:
The disadvantages of Normally White Twisted Nematic Liquid Crystal Display (NW-TN-LCD) were discussed. The reason that the negative birefringent polyimide thin films were used to compensate NW-TN-LCD to decrease off-axis leakage, improve contrast ratios and enlarge viewing angles was explained in this paper. A certain polyimide thin film was taken as an example to show compensation effect on NW-TN-LCD.
Resumo:
We synthesize some powder phosphors of CaF2:Ce3+ under different reaction conditions, find three luminous centres, and demonstrate that each luminous centre is formed with different charge compensation procedures.
Resumo:
The spectrochemistry of Eu2+-doped perovskite KMgF3 was examined and discussed. Eu2+ can replace some of the K+ in the KMgF3 crystal, and simultaneously the corresponding cation hole can be compensated with the F- or O2- in the matrix. The emission intensity of Eu2+ due to the f --> f transition increased when Na+, Rb+ or F- was doped in KMgF3:Eu2+. Two mechanisms of charge compensation were proposed. No obvious valence change of Eu2+ occurred in KMgF3:Eu2+ after calcinating at high temperature, e.g. 900-degrees-C. It was found that the valence stability of Eu2+ improved after incorporation into the matrix.
Resumo:
Direct air-sea flux measurements were made on RN Kexue #1 at 40 degrees S, 156 degrees E during the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmospheric Response Experiment (COARE) Intensive Observation Period (IOP). An array of six accelerometers was used to measure the motion of the anchored ship, and a sonic anemometer and Lyman-alpha hygrometer were used to measure the turbulent wind vector and specific humidity. The contamination of the turbulent wind components by ship motion was largely removed by an improvement of a procedure due to Shao based on the acceleration signals. The scheme of the wind correction for ship motion is briefly outlined. Results are presented from data for the best wind direction relative to the ship to minimize flow distortion effects. Both the time series and the power spectra of the sonic-measured wind components show swell-induced ship motion contamination, which is largely removed by the accelerometer correction scheme, There was less contamination in the longitudinal wind component than in the vertical and transverse components. The spectral characteristics of the surface-layer turbulence properties are compared with those from previous land and ocean results, Momentum and latent heat fluxes were calculated by eddy correlation and compared to those estimated by the inertial dissipation method and the TOGA COARE bulk formula. The estimations of wind stress determined by eddy correlation are smaller than those from the TOGA COARE bulk formula, especially for higher wind speeds, while those from the bulk formula and inertial dissipation technique are generally in agreement. The estimations of latent heal flux from the three different methods are in reasonable agreement. The effect of the correction for ship motion on latent heat fluxes is not as large as on momentum fluxes.