781 resultados para Magnesium, Supplementation, Hypomagnesemia
Resumo:
The effect of short-term creatine (Cr) supplementation upon content of skeletal muscle-derived-reactive oxygen species (ROS) was investigated. Wistar rats were supplemented with Cr (5 g/kg BW) or vehicle, by gavage, for 6 days. Soleus and extensor digitorum longus (EDL) muscles were removed and incubated for evaluation of ROS content using Amplex-UltraRed reagent. The analysis of expression and activity of antioxidant enzymes (superoxide dismutase 1 and 2, catalase and glutathione peroxidase) were performed. Direct scavenger action of Cr on superoxide radical and hydrogen peroxide was also investigated. Short-term Cr supplementation attenuated ROS content in both soleus and EDL muscles (by 41 and 33.7%, respectively). Cr supplementation did not change expression and activity of antioxidant enzymes. Basal TBARS content was not altered by Cr supplementation. In cell-free experiments, Cr showed a scavenger effect on superoxide radical in concentrations of 20 and 40 mM, but not on hydrogen peroxide. These results indicate that Cr supplementation decreases ROS content in skeletal muscle possibly due to a direct action of Cr molecule on superoxide radical.
Resumo:
The tissue changes that occur in Chagas disease are related to the degree of oxidative stress and antioxidant capacity of affected tissue. Studies with vitamin C supplementation did not develop oxidative damage caused by Chagas disease in the host, but other studies cite the use of peroxiredoxins ascorbate - dependent on T. cruzi to offer protection against immune reaction. Based on these propositions, thirty "Swiss" mice were infected with T. cruzi QM1 strain and treated with two different vitamin C doses in order to study the parasitemia evolution, histopathological changes and lipid peroxidation biomarkers during the acute phase of Chagas disease. The results showed that the parasite clearance was greater in animals fed with vitamin C overdose. There were no significant differences regarding the biomarkers of lipid peroxidation and inflammatory process or the increase of myocardium in animals treated with the recommended dosage. The largest amount of parasite growth towards the end of the acute phase suggests the benefit of high doses of vitamin C for trypomastigotes. The supplementation doesn't influence the production of free radicals or the number of amastigote nests in the acute phase of Chagas disease.
Resumo:
Zinc is an essential micronutrient for growth and development. Its deficiency causes growth retardation in children and adolescents. The present study analyzes the effect of zinc on growth hormone (GH) secretion, insulin-like growth factor 1 (IGF1), and insulin-like growth factor-binding protein 3 (IGFBP3) in normal children before puberty. Thirty normal children were studied, 15 boys and 15 girls, aged 6-9 years. They were orally supplemented with 5 mg Zn/day for 3 months and 0.06537 mg Zn/kg body weight was injected before and after oral supplementation. Dietary intake and anthropometric measurements were assessed at baseline and end of study. Plasma GH levels increased during intravenous zinc administration and IGF1 and IGFBP3 increased after oral zinc supplementation. There was a positive correlation between the areas under the curves of GH and zinc after oral supplementation. Zinc supplementation was possibly effective in improving the body zinc status of the children, secretory levels of IGF1 and IGFBP3, GH potentialization, and height.
Resumo:
The objective was to determine the effects of carbohydrate (CHO) supplementation on exercise-induced hormone responses and post-training intramyocellular lipid stores (IMCL). Twenty-four elite male athletes (28.0 +/- 1.2 years) were randomized to receive CHO (maltodextrin solution) or zero energy placebo solution (control group). The high-intensity running protocol consisted of 10 x 800 m at 100% of the best 3000-m speed (Vm3 km) and 2 x 1000 m maximal bouts in the morning and a submaximal 10-km continuous easy running in the afternoon of day 9. IMCL concentrations were assessed by H-1-MRS before (-day 9) and after training (day 9) in soleus (SO) and tibialis anterior (TA) muscles. Blood hormones were also measured before, during, and post-exercise. The percent change (Delta%) in TA-IMCL was higher in the CHO group (47.9 +/- 24.5 IMCL/Cr) than in the control group (-1.7 +/- 13.1, respectively) (P=.04). Insulin concentrations were higher in the CHO group post-intermittent running compared to control (P=.02). Circulating levels of free fatty acids and GH were lower in the CHO group (P>.01). The decline in performance in the 2nd 1000-m bout was also attenuated in this group compared to control (P<.001 and P=.0035, respectively). The hormonal milieu (higher insulin and lower GH levels) in the CHO group, together with unchanged free fatty acid levels, probably contributed to the increased IMCL stores. This greater energy storage capacity may have improved post-exercise recovery and thus prevented performance deterioration. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite derived from leucine. The anti-catabolic effect of HMB is well documented but its effect upon skeletal muscle strength and fatigue is still uncertain. In the present study, male Wistar rats were supplemented with HMB (320 mg/kg per day) for 4 weeks. Placebo group received saline solution only. Muscle strength (twitch and tetanic force) and resistance to acute muscle fatigue of the gastrocnemius muscle were evaluated by direct electrical stimulation of the sciatic nerve. The content of ATP and glycogen in red and white portions of gastrocnemius muscle were also evaluated. The effect of HMB on citrate synthase (CS) activity was also investigated. Muscle tetanic force was increased by HMB supplementation. No change was observed in time to peak of contraction and relaxation time. Resistance to acute muscle fatigue during intense contractile activity was also improved after HMB supplementation. Glycogen content was increased in both white (by fivefold) and red (by fourfold) portions of gastrocnemius muscle. HMB supplementation also increased the ATP content in red (by twofold) and white (1.2-fold) portions of gastrocnemius muscle. CS activity was increased by twofold in red portion of gastrocnemius muscle. These results support the proposition that HMB supplementation have marked change in oxidative metabolism improving muscle strength generation and performance during intense contractions.
Resumo:
Attempts to improve beef tenderness through supplementation with dietary vitamin D-3 have been challenged by null results and negative impacts on animal performance and carcass traits. Because vitamin D-3 is also synthesised by the animal via ultraviolet radiation from sunlight, the effectiveness of supplementation with dietary vitamin D-3 may be modulated by the degree of exposure of the animal to sunlight. Hence, this work aimed to verify whether dietary vitamin D-3 modifies meat quality without negatively affecting animal performance and carcass traits in B. indicus beef cattle that were either exposed to or protected from natural sunlight. Forty-two (411 +/- 38 kg) Nellore-type castrated males were fed a high-concentrate diet for 45 days after assignment to a treatment group. The treatments comprised combinations of three levels of vitamin D3 [ViTD - none (V0) or 2 x 10(6) IU of vitamin D-3 administered for either 2 (V2) or 8 (V8) consecutive days pre-slaughter] and two shading conditions (SHADE - unshaded or shaded). The post-mortem (pm) measurements were taken in the Longissimus thoracis et lumborum muscle. The animal performance and carcass traits were unaffected by ViTD or SHADE The V2 treatment increased the Myofibrillar Fragmentation Index in shaded animals compared to unshaded ones. Animals under shade had higher muscle calcium concentration. There was no effect of either ViTD or SHADE on the shear force. The L* values were higher at 24 h pm than at 0 and 1 h pm, with no differences among the animals in the ViTD or SHADE groups. Higher a* values were observed among animals in the V8 group than in the V0 group, and higher b* values were observed among animals in the V8 group than in the V2 or V0 groups, which were not different. In conclusion, ViTD and SHADE did not affect animal performance, carcass traits or shear force, whereas animals receiving a lower ViTD dosage and SHADE exhibited altered myofibrillar fragmentation. ViTD affected the colour parameters, and changes in the lightness of the beef related to the time pm were found in meat from animals under SHADE. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this study, we investigated the effect of glutamine (Gln) supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ)-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1) and the degradation pathways (MuRF-1 and MAFbx) were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1) control, non-supplemented with glutamine; 2) control, supplemented with glutamine; 3) diabetic, non-supplemented with glutamine; and 4) diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2); the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS) was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes.
Resumo:
Iron has been suggested to reduce the erosive potential of cola drinks in vitro. Objective: The aim of this study was to evaluate in situ the effect of ferrous sulfate supplementation on the inhibition of the erosion caused by a cola drink. Material and Methods: Ten adult volunteers participated in a crossover protocol conducted in two phases of 5 days, separated by a washout period of 7 days. In each phase, they wore palatal devices containing two human enamel and two human dentin blocks. The volunteers immersed the devices for 5 min in 150 mL of cola drink (Coca-Cola (TM), pH 2.6), containing ferrous sulfate (10 mmol/L) or not (control), 4 times per day. The effect of ferrous sulfate on the inhibition of erosion was evaluated by profilometry (wear). Data were analyzed by paired t tests (p<0.05). Results: The mean wear (+/- se) was significantly reduced in the presence of ferrous sulfate, both for enamel (control: 5.8 +/- 1.0 mu m; ferrous sulfate: 2.8 +/- 0.6 mu m) and dentin (control: 4.8 +/- 0.8 mu m; ferrous sulfate: 1.7 +/- 0.7 mu m). Conclusions: The supplementation of cola drinks with ferrous sulfate can be a good alternative for the reduction of their erosive potential. Additional studies should be done to test if lower ferrous sulfate concentrations can also have a protective effect as well as the combination of ferrous sulfate with other ions.
Resumo:
Background: Large amounts of reactive oxygen species are produced in hemodialysis (HD) patients, and, at higher concentrations, reactive oxygen species are thought to be involved in the pathogenesis of cardiovascular disease. It has been proposed that selenium (Se) may exert an antiatherogenic influence by reducing oxidative stress. The richest known food source of Se is the Brazil nut (Bertholletia excelsa, family Lecythidaceae), found in the Amazon region. Objective: The objective of this work was to determine if Se plasma levels in HD patients submitted to a program of supplementation during 3 months with 1 Brazil nut by day could be sustained after 12 months. Methods: A total of 21 HD patients (54.2 +/- 15.2 years old; average time on dialysis, 82.3 +/- 51.6 months; body mass index, 24.4 +/- 3.8 kg/m(2)) from the RenalCor Clinic in Rio de Janeiro, Brazil, were followed up 12 months after the supplementation study ended. The Se plasma levels were determined by atomic absorption spectrophotometry with hydride generation. Results: The Se Plasma levels (17.3 +/- 19.9 mg/L) were below the normal range (60 to 120 mu g/L) before nut supplementation, and after 3 months of supplementation, the levels increased to 106.8 +/- 50.3 mu g/L (P < .0001). Twelve months after supplementation, the plasma Se levels decreased to 31.9 +/- 14.8 mu g/L (P < .0001). Conclusions: The data showed that these patients were Se deficient and that the consumption of Brazil nut was effective to increase the Se parameters of nutritional status. Se levels 12 months after the supplementation period were not as low as presupplementation levels but yet significantly lower, and we needed to motivate patients to adopt different dietary intake patterns. (C) 2012 by the National Kidney Foundation, Inc. All rights reserved.
Resumo:
The objective of this study was to evaluate the effect of creatine supplementation on muscle and plasma markers of oxidative stress after acute aerobic exercise. A total of 64 Wistar rats were divided into two groups: control group (n = 32) and creatine-supplemented group (n = 32). Creatine supplementation consisted of the addition of 2% creatine monohydrate to the diet. After 28 days, the rats performed an acute moderate aerobic exercise bout (1-h swimming with 4% of total body weight load). The animals were killed before (pre) and at 0, 2 and 6 h (n = 8) after acute exercise. As expected, plasma and total muscle creatine concentrations were significantly higher (P < 0.05) in the creatine-supplemented group compared to control. Acute exercise increased plasma thiobarbituric acid reactive species (TBARS) and total lipid hydroperoxide. The same was observed in the soleus and gastrocnemius muscles. Creatine supplementation decreased these markers in plasma (TBARS: pre 6%, 0 h 25%, 2 h 27% and 6 h 20%; plasma total lipid hydroperoxide: pre 38%, 0 h 24%, 2 h 12% and 6 h 20%, % decrease). Also, acute exercise decreased the GSH/GSSG ratio in soleus muscle, which was prevented by creatine supplementation (soleus: pre 8%, 0 h 29%, 2 h 30% and 6 h 44%, % prevention). The results show that creatine supplementation inhibits increased oxidative stress markers in plasma and muscle induced by acute exercise.
Resumo:
Bucioli, SA, de Abreu, LC, Valenti, VE, and Vannucchi, H. Carnitine supplementation effects on nonenzymatic antioxidants in young rats submitted to exhaustive exercise stress. J Strength Cond Res 26(6): 1695-1700, 2012-Previous studies have demonstrated that exercise stress increases oxidative stress in rats. However, antioxidant supplement therapy effects on reactive oxygen substances are conflicting. We evaluated the effects of carnitine on renal nonenzymatic antioxidants in young rats submitted to exhaustive exercise stress. Wistar rats were divided into 3 groups: (a) control group (not submitted to exercise stress), (b) exercise stress group, and (c) exercise stress and carnitine group. The rats from group 3 were treated with gavage administration of 1 ml of carnitine (5 mg.kg(-1)) for 7 consecutive days. The animals from groups 2 and 3 were submitted to a bout of swimming exhaustive exercise stress. Kidney samples were analyzed for reactive substances to thiobarbituric acid by malondialdehyde (MDA), reduced glutathione (GSH), and vitamin-E levels. Carnitine treatment attenuated MDA increase caused by exercise stress (1:0.16 +/- 0.02 vs. 2:0.34 +/- 0.07 vs. 3:0.1 +/- 0.01 mmmol per milligram of protein; p < 0.0001). It also increased the renal levels of GSH (1:23 +/- 4 vs. 2:23 +/- 2 vs. 3:58 +/- 9 mu mol per gram of protein; p, 0.0001); however, it did not change renal vitamin E (1:24 +/- 5 vs. 2:27 +/- 1 vs. 3:28 +/- 5 mu M per gram of tissue; p < 0.001). In conclusion, carnitine improved oxidative stress and partially improved the nonenzymatic antioxidant activity in young rats submitted to exhaustive exercise stress.
Carbohydrate supplementation delays DNA damage in elite runners during intensive microcycle training
Resumo:
The aim of this study was to evaluate the effect of carbohydrate supplementation on free plasma DNA and conventional markers of training and tissue damage in long-distance runners undergoing an overload training program. Twenty-four male runners were randomly assigned to two groups (CHO group and control group). The participants were submitted to an overload training program (days 1-8), followed by a high-intensity intermittent running protocol (10 x 800 m) on day 9. The runners received maltodextrin solution (CHO group) or zero energy placebo solution as the control equivalent before, during, and after this protocol. After 8 days of intensive training, baseline LDH levels remained constant in the CHO group (before: 449.1 +/- 18.2, after: 474.3 +/- 22.8 U/L) and increased in the control group (from 413.5 +/- 23.0 to 501.8 +/- 24.1 U/L, p < 0.05). On day 9, LDH concentrations were lower in the CHO group (509.2 +/- 23.1 U/L) than in the control group (643.3 +/- 32.9 U/L, p < 0.01) post-intermittent running. Carbohydrate ingestion attenuated the increase of free plasma DNA post-intermittent running (48,240.3 +/- 5,431.8 alleles/mL) when compared to the control group (73,751.8 +/- 11,546.6 alleles/mL, p < 0.01). Leukocyte counts were lower in the CHO group than in the control group post-intermittent running (9.1 +/- 0.1 vs. 12.2 +/- 0.7 cells/mu L; p < 0.01) and at 80 min of recovery (10.6 +/- 0.1 vs. 13.9 +/- 1.1 cells/mu L; p < 0.01). Cortisol levels were positively correlated with free plasma DNA, leukocytes, and LDH (all r > 0.4 and p < 0.001). The results showed that ingestion of a carbohydrate beverage resulted in less DNA damage and attenuated the acute post-exercise inflammation response, providing better recovery during intense training.
Resumo:
The objective of the present work was to study the renal function of healthy and tumor-bearing rats chronically supplemented with fish oil (FO), a source of n-3 polyunsaturated fatty acids. Weanling male rats were divided in two groups, one control (C) and another orally supplemented for 70 days with FO (1 g/kg body weight). After this time, half the animals of each group were injected in the right flank with a suspension of Walker 256 tumor cells (W and WFO). The W group had less proteinemia reflecting cachectic proteolysis, FO reversed this fact. Tumor weight gain was also reduced in WFO. Glomerular filtration rate (GFR) was not different in FO or W compared to C, but was higher in WFO. Renal plasma flow (RPF) was higher in the FO supplemented groups. The W group had lower plasma osmolality than the C group, but FO supplementation resulted in normalization of this parameter. Fractional sodium excretion (FENa+) of FO rats was similar to C. Proximal Na+ reabsorption, evaluated by lithium clearance, was similar among the groups. Urinary thromboxane B-2 (TXB2) excretion was lower in the supplemented groups. The number of macrophages in renal tissue was higher in W compared to C rats, but was lower in WFO rats compared to W rats. In conclusion, FO supplementation resulted in less tumor growth and cachexia, and appeared to be renoprotective, as suggested by higher RPF and GFR.
Resumo:
The aim of this study was to investigate the effects of beta-alanine supplementation on exercise capacity and the muscle carnosine content in elderly subjects. Eighteen healthy elderly subjects (60-80 years, 10 female and 4 male) were randomly assigned to receive either beta-alanine (BA, n = 12) or placebo (PL, n = 6) for 12 weeks. The BA group received 3.2 g of beta-alanine per day (2 x 800 mg sustained-release Carnosyn (TM) tablets, given 2 times per day). The PL group received 2 x (2 x 800 mg) of a matched placebo. At baseline (PRE) and after 12 weeks (POST-12) of supplementation, assessments were made of the muscle carnosine content, anaerobic exercise capacity, muscle function, quality of life, physical activity and food intake. A significant increase in the muscle carnosine content of the gastrocnemius muscle was shown in the BA group (+85.4%) when compared with the PL group (+7.2%) (p = 0.004; ES: 1.21). The time-to-exhaustion in the constant-load submaximal test (i.e., TLIM) was significantly improved (p = 0.05; ES: 1.71) in the BA group (+36.5%) versus the PL group (+8.6%). Similarly, time-to-exhaustion in the incremental test was also significantly increased (p = 0.04; ES 1.03) following beta-alanine supplementation (+12.2%) when compared with placebo (+0.1%). Significant positive correlations were also shown between the relative change in the muscle carnosine content and the relative change in the time-to-exhaustion in the TLIM test (r = 0.62; p = 0.01) and in the incremental test (r = 0.48; p = 0.02). In summary, the current data indicate for the first time, that beta-alanine supplementation is effective in increasing the muscle carnosine content in healthy elderly subjects, with subsequent improvement in their exercise capacity.
Resumo:
The present study aimed to evaluate the photoprotective effects of cosmetic formulations containing a dispersion of liposome with magnesium ascorbyl phosphate (MAP), alpha-lipoic acid (ALA) and kinetin, as well as their effects on the hydration and viscoelastic skin properties. The photoprotection was determined in vitro (antioxidant activity) and in vivo on UV-irradiated hairless mouse skin. The hydration effects were performed with the application of the formulations under study on the forearm of human volunteers and skin conditions were analyzed before and after a single application and daily applications during 4 weeks in terms of transepidermal water loss (TEWL), skin moisture and viscoelastic properties. The raw material under study possessed free-radical scavenging activity and the formulation with it protected hairless mouse skin barrier function against UV damage. After 4 weeks of application on human skin, the formulation under study enhanced stratum corneum skin moisture and also showed hydration effects in deeper layers of the skin. Thus, it can be concluded that the cosmetic formulation containing a dispersion of liposome with MAP, ALA and kinetin under study showed photoprotective effects in skin barrier function as well as pronounced hydration effects on human skin, which suggests that this dispersion has potential antiaging effects.