945 resultados para MODIFIED SILICA-GEL
Resumo:
Highly crystalline zeolite Beta coatings in a range of Si/Al ratios of 12-23 were synthesized on a surface-modified molybdenum substrate by hydrothermal synthesis. The average thickness of the coatings was ca. 2 mu m corresponding to a coverage of 2.5 gm(-2). The coatings were obtained from a viscous Na, K, and TEAOH containing aluminosilicate precursor mixture with silica sol as reactive silicon source. A mechanism for the in situ growth of zeolite Beta coatings is proposed. According to this mechanism, the deposition of an amorphous gel layer on the substrate surface in the initial stage of the synthesis is an important step for the crystallization of continuous zeolite Beta coatings. The heating rate of the precursor mixture and the synthesis temperature were optimized to control the level of supersaturation and to stimulate the initial formation of a gel layer. At a Si/Al ratio of 23, fast heating and a temperature of 150 degrees C are required to obtain high coverage, while at a Si/Al ratio of 15, hydrothermal synthesis has to be performed with a slow initial heating rate at 140 degrees C. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Purpose The retinal pigment epithelium (RPE) and underlying Bruch’s membrane undergo significant modulation during ageing. Progressive, age-related modifications of lipids and proteins by advanced glycation end products (AGEs) at this cell–substrate interface have been implicated in RPE dysfunction and the progression to age-related macular degeneration (AMD). The pathogenic nature of these adducts in Bruch’s membrane and their influence on the overlying RPE remains unclear. This study aimed to identify alterations in RPE protein expression in cells exposed to AGE-modified basement membrane (AGE-BM), to determine how this “aged” substrate impacts RPE function and to map the localisation of identified proteins in ageing retina. Methods Confluent ARPE-19 monolayers were cultured on AGE-BM and native, non-modified BM (BM). Following 28-day incubation, the proteome was profiled using 2-dimensional gel electrophoresis (2D), densitometry and image analysis was employed to map proteins of interest that were identified by electrospray ionisation mass spectrometry (ESI MS/MS). Immunocytochemistry was employed to localise identified proteins in ARPE-19 monolayers cultured on unmodified and AGE-BM and to analyze aged human retina. Results Image analysis detected altered protein spot densities between treatment groups, and proteins of interest were identified by LC ESI MS/MS which included heat-shock proteins, cytoskeletal and metabolic regulators. Immunocytochemistry revealed deubiquitinating enzyme ubiquitin carboxyterminal hydrolase-1 (UCH-L1), which was upregulated in AGE-exposed RPE and was also localised to RPE in human retinal sections. Conclusions This study has demonstrated that AGE-modification of basement membrane alters the RPE proteome. Many proteins are changed in this ageing model, including UCHL-1, which could impact upon RPE degradative capacity. Accumulation of AGEs at Bruch”s membrane could play a significant role in age-related dysfunction of the RPE.
Resumo:
Surface characterization of amorphous silica-alumina (ASA) by COads IR, pyridine(ads) IR, alkylamine temperature-programmed desorption (TPD), Cs+ and Cu(EDA)(2)(2+) exchange, H-1 NMR, and m-xylene isomerization points to the presence of a broad range of Bronsted and Lewis acid sites. Careful interpretation of IR spectra of adsorbed CO or pyridine confirms the presence of a few very strong Bronsted acid sites (BAS), typically at concentrations lower than 10 mu mol/g. The general procedure for alkylamine TPD, which probes both Bronsted and Lewis acidity, is modified to increase the selectivity to strong Bronsted acid sites. Poisoning of the m-xylene isomerization reaction by a base is presented as a novel method to quantify strong BAS. The surface also contains a weaker form of BAS, in concentrations between 50 and 150 mu mol/g, which can be quantified by COads IR Cu(EDA)(2)(2+) exchange also probes these sites. The structure of these sites remains unclear, but they might arise from the interaction of silanol groups with strong Lewis acid Al3+ sites. The surface also contains nonacidic aluminol and silanol sites (200-400 mu mol/g) and two forms of Lewis acid sites: (i) a weaker form associated with segregated alumina domains containing five-coordinated Al, which make up the interface between these domains and the ASA phase and (ii) a stronger form, which are undercoordinated Al sites grafted onto the silica surface. The acid catalytic activity in bifunctional n-heptane hydroconversion correlates with the concentration of strong BAS. The influence of the support electronegativity on the neopentane hydrogenolysis activity of supported Pt catalysts is considerably larger than that of the support Bronsted acidity. It is argued that strong Lewis acid sites, which are present in ASA but not in gamma-alumina, are essential to transmit the Sanderson electronegativity of the oxide support to the active Pt phase.
Resumo:
PURPOSE: To assess the effects of advanced glycation endproduct (AGE) modification of vascular basement membrane (BM) on endothelin-1 (Et-1) induced intracellular [Ca2+] ([Ca2+]i) homeostasis and contraction in retinal microvascular pericytes (RMP). METHODS: RMPs were isolated from bovine retinal capillaries and propagated on AGE modified BM extract (AGE-BM) or non-modified native BM. Cytosolic Ca2+ was estimated using fura-2 microfluorimetry and cellular contraction determined by measurement of planimetric cell surface area. ETA receptor mRNA and protein expression was assessed by real time RT-PCR and western blotting, respectively. RESULTS: Exogenous endothelin-1 (Et-1) evoked rises in [Ca2+]i and contraction in RMPs were found to be mediated entirely through ETA receptor (ETAR) activation. Both peak and plateau phases of the Et-1 induced [Ca2+]i response and contraction were impaired in RMPs propagated on AGE modified BM. ETAR mRNA expression remained unchanged in RMPs exposed to native or AGE-BM, but protein expression for ETAR (66 kDa) was lower in the AGE exposed cells. CONCLUSIONS: These results suggest that substrate derived AGE crosslinks can influence RMP physiology by mechanisms which include disruption of ETA receptor signalling. AGE modification of vascular BMs may contribute to the retinal hemodynamic abnormalities observed during diabetes.
Resumo:
We previously reported nonaqueous silicone elastomer gels (SEGs) for sustained vaginal administration of the CCR5-targeted entry inhibitor maraviroc (MVC). Here, we describe chemically modified SEGs (h-SEGs) in which the hydrophobic cyclomethicone component was partially replaced with relatively hydrophilic silanol-terminated polydimethylsiloxanes (st-PDMS). MVC and emtricitabine (a nucleoside reverse transcriptase inhibitor), both currently under evaluation as topical microbicides to counter sexual transmission of human immunodeficiency virus type 1 (HIV-1), were used as model antiretroviral (ARV) drugs. Gel viscosity and in vitro ARV release were significantly influenced by st-PDMS molecular weight and concentration in the h-SEGs. Unexpectedly, gels prepared with lower molecular weight grades of st-PDMS showed higher viscosities. h-SEGs provided enhanced release over 24 h compared with aqueous hydroxyethylcellulose (HEC) gels, did not modify the pH of simulated vaginal fluid (SVF), and were shown to less cytotoxic than standard HEC vaginal gel. ARV solubility increased as st-PDMS molecular weight decreased (i.e., as percentage hydroxyl content increased), helping to explain the in vitro release trends. Dye ingression and SVF dilution studies confirmed the increased hydrophilicity of the h-SEGs. h-SEGs have potential for use in vaginal drug delivery, particularly for ARV-based HIV-1 microbicides.
Resumo:
Part 1: The alkaline single-cell gel electrophoresis (comet) assay was used to analyse the integrity and DNA content of exfoliated cells extracted from bladder washing specimens from 9 transitional cell carcinoma patients and 15 control patients. DNA damage, as expressed by % tail DNA and tail moment values, was observed to occur in cells from both control and bladder cancer samples. The extent of the damage was, however, found to be significantly greater in the cancer group than in the control group. Comet optical density values were also recorded for each cell analysed in the comet assay and although differences observed between tumour grades were not found to be statistically significant, the mean comet optical density value was observed to be greater in the cancer group than in the control population studied, These preliminary results suggest that the comet assay may have potential as a diagnostic tool and as a prognostic indicator in transitional cell carcinoma, Part 2: Baseline DNA damage in sperm cells from 13 normozoospermic fertile males, 17 normozoospermic infertile males and 11 asthenozoospermic infertile males were compared using a modified alkaline comet assay technique. No significant difference in the level of baseline DNA damage was observed between the 3 categories of sperm studied; however the untreated sperm cells were observed to display approximately 20% tail DNA. This is notably higher than the background DNA damage observed in somatic cells where the % tail DNA is normally less than 5%. Sperm from the 3 groups of men studied were also compared for sensitivity to DNA breakage, using the modified alkaline comet assay, following X-ray irradiations (5, 10 and 30 Gy) and hydrogen peroxide treatments (40, 100 and 200 mu M). Significant levels of X-ray-induced damage were found relative to untreated control sperm in the two infertile groups following 30 Gy irradiation. Significant damage in hydrogen peroxide-treated sperm was observed in sperm from fertile samples, at 200 mu M and in infertile samples at 100- and 200-mu M doses relative to controls. These results therefore indicate that fertile sperm samples are more resistant to X-ray- and hydrogen peroxide-induced DNA breakage than infertile samples. Further studies involving greater numbers of individuals are currently in progress to confirm these findings.
Resumo:
It is widely accepted that silicon-substituted materials enhance bone formation, yet the mechanism by which this occurs is poorly understood. This work investigates the potential of using diatom frustules to answer on fundamental questions surrounding the role of silica in bone healing. Biosilica with frustules 20m were isolated from Cyclotella meneghiniana a unicellular microalgae that was sourced from the Mississippi River, USA. Silanisation chemistry was used to modify the surface of C. meneghiniana with amine (–NH2) and thiol (–SH) terminated silanes. Untreated frustules and both functionalised groups were soaked in culture medium for 24hrs. Following the culture period, frustules were separated from the conditioned medium by centrifugation and both were tested separately in vitro for cytotoxicity using murine-monocyte macrophage (J774) cell line. Cytotoxicity was measured using LDH release to measure damage to cell membrane, MTS to measure cell viability and live-dead staining. The expression and release of pro-inflammatory cytokines (IL-6 and TNF) were measured using ELISA. Our results found that diatom frustules and those functionalised with amino groups showed no cytotoxicity or elevated cytokine release. Diatom frustules functionalised with thiol groups showed higher levels of cytotoxicity. Diatom frustules and those functionalised with amino groups were taken forward to an in vivo mouse toxicity model, whereby the immunological response, organ toxicity and route of metabolism/excretion of silica were investigated. Histological results showed no organ toxicity in any of the groups relative to control. Analysis of blood Si levels suggests that modified frustules are metabolised quicker than functionalised frustules, suggesting that physiochemical attributes influence their biodistribution. Our results show that diatom frustules are non cytotoxic and are promising materials to better understand the role of silica in bone healing.
Resumo:
Esta tese relata estudos de síntese, caracterização da estrutura e das propriedades de fotoluminescência e aplicações de nanotubos e nanobastonetes de óxidos de lantanídeos em pontas para microscopia de força atómica, catálise heterogénea e compósitos de base polimérica. Há um interesse crescente em compreender como o confinamento quântico decorrente da redução do tamanho de partícula pode influenciar a eficiência da luminescência, a dinâmica dos estados excitados, a transferência de energia e os efeitos de termalização de nanoluminóforos. Em nanocristais dopados com lantanídeos (Ln3+), e apesar da localização dos estados 4f, ocorrem efeitos de confinamento quântico via interacção com os modos vibracionais da rede. Em particular, a termalização anómala, descrita para uma variedade de nanocristais dopados com Ln3+, tem sido atribuída à ausência de modos vibracionais de menor frequência. Este nanoconfinamento pode ter impacto na dinâmica da luminescência, bem como na transferência de energia mediada por modos vibracionais e processos de upconversion. Nesta tese, relata-se o estudo deste efeito em nanotubos de Gd2O3:Eu3+. A influência de parâmetros como a concentração de európio e as condições de calcinação também foi investigada. Algumas aplicações destes óxidos de lantanídeos também foram exploradas, nomeadamente a modificação de pontas usadas em microscopia de força atómica com nanobastonetes de Gd2O3:Eu3+, lograda através de dielectroforese, técnica que não degrada a emissão de luz (rendimento quântico 0.47). As pontas modificadas são estáveis sob condições de trabalho, podendo ser aplicadas, por exemplo, em microscopia óptica de varrimento de campo próximo (SNOM). A oxidação em fase líquida do etilbenzendo foi investigada usando como catalisador nanotubos de CeO2, em presença dos oxidantes hidroperóxido de t-butilo e H2O2, e do solvente acetonitrilo, e temperaturas entre 55 e 105 ºC. Nanobastonetes de Gd2O3:Eu3+ recobertos com sílica foram preparados pelo método sol-gel. Esta cobertura resultou num aumento, quer do rendimento quântico de emissão, de 0.51 para 0.86 (excitação a 255 nm), quer dos tempos de vida,de 1.43 para 1.80 ms (excitação a 394.4 nm). A superfície dos nanotubos cobertos com sílica foi modificada com o agente de acoplamento metacrilato de 3-(trimetoxissilil)propilo que permitiu a preparação de compósitos através da subsequente polimerização in-situ do estireno por técnicas de miniemulsão e solução. ABSTRACT: This thesis reports on the synthesis, characterisation of the structure and photoluminescence properties, and applications of nanotubes and nanorods of lanthanides oxides in atomic force microscopy tips, heterogeneous catalysis and polymer-base composites. There is a growing interest in understanding how size-dependent quantum confinement affects the photoluminescence efficiency, excited-state dynamics, energy-transfer and thermalisation phenomena in nanophosphors. For lanthanide (Ln3+)-doped nanocrystals, and despite the localisation of the 4f states, confinement effects are induced mostly via electron-phonon interactions. In particular, the anomalous thermalisation reported for a handful of Ln3+-doped nanocrystals has been rationalised by the absence of lowfrequency phonon modes. This nanoconfinement may further impact on the Ln3+ luminescence dynamics, such as phonon-assisted energy transfer or upconversion processes. Here, this effect is investigated in Gd2O3:Eu3+ nanotubes. The influence of parameters such as europium concentration and calcination procedure is also studied. Some applications of these lanthanides oxides have been explored, for instance the modification of atomic force microscopy tips with photoluminescent Gd2O3:Eu3+ nanorods, using dielectrophoresis, a technique which preserves the red emission of the nanorods (quantum yield 0.47). The modified tips are stable under working conditions and may find applications in scanning near-field optical microscopy. The liquid-phase oxidation of ethylbenzene over CeO2 nanotubes has been investigated, using tert-butyl-hydroperoxide and H2O2 as the oxidising agents, and acetonitrile as the solvent, in the range 55-105 ºC. Gd2O3:Eu3+ nanorods have been coated with silica via a sol-gel approach. The silica coating increases both, the Eu3+ absolute emission quantum yields from 0.51 to 0.86 (255 nm excitation), and decay times from 1.43 to 1.80 ms (394.4 nm excitation). The silica coating was modified with 3- (trimethoxysilyl) propyl methacrylate and, subsequently, composites have been prepared by in-situ radical polymerisation of styrene via miniemulsion and solution routes.
Resumo:
A indústria aeronáutica utiliza ligas de alumínio de alta resistência para o fabrico dos elementos estruturais dos aviões. As ligas usadas possuem excelentes propriedades mecânicas mas apresentam simultaneamente uma grande tendência para a corrosão. Por esta razão essas ligas necessitam de protecção anticorrosiva eficaz para poderem ser utilizadas com segurança. Até à data, os sistemas anticorrosivos mais eficazes para ligas de alumínio contêm crómio hexavalente na sua composição, sejam pré-tratamentos, camadas de conversão ou pigmentos anticorrosivos. O reconhecimento dos efeitos carcinogénicos do crómio hexavalente levou ao aparecimento de legislação banindo o uso desta forma de crómio pela indústria. Esta decisão trouxe a necessidade de encontrar alternativas ambientalmente inócuas mas igualmente eficazes. O principal objectivo do presente trabalho é o desenvolvimento de prétratamentos anticorrosivos activos para a liga de alumínio 2024, baseados em revestimentos híbridos produzidos pelo método sol-gel. Estes revestimentos deverão possuir boa aderência ao substrato metálico, boas propriedades barreira e capacidade anticorrosiva activa. A protecção activa pode ser alcançada através da incorporação de inibidores anticorrosivos no prétratamento. O objectivo foi atingido através de uma sucessão de etapas. Primeiro investigou-se em detalhe a corrosão localizada (por picada) da liga de alumínio 2024. Os resultados obtidos permitiram uma melhor compreensão da susceptibilidade desta liga a processos de corrosão localizada. Estudaram-se também vários possíveis inibidores de corrosão usando técnicas electroquímicas e microestruturais. Numa segunda etapa desenvolveram-se revestimentos anticorrosivos híbridos orgânico-inorgânico baseados no método sol-gel. Compostos derivados de titania e zirconia foram combinados com siloxanos organofuncionais a fim de obter-se boa aderência entre o revestimento e o substrato metálico assim como boas propriedades barreira. Testes industriais mostraram que estes novos revestimentos são compatíveis com os esquemas de pintura convencionais actualmente em uso. A estabilidade e o prazo de validade das formulações foram optimizados modificando a temperatura de armazenamento e a quantidade de água usada durante a síntese. As formulações sol-gel foram dopadas com os inibidores seleccionados durante a primeira etapa e as propriedades anticorrosivas passivas e activas dos revestimentos obtidos foram estudadas numa terceira etapa do trabalho. Os resultados comprovam a influência dos inibidores nas propriedades anticorrosivas dos revestimentos sol-gel. Em alguns casos a acção activa dos inibidores combinou-se com a protecção passiva dada pelo revestimento mas noutros casos terá ocorrido interacção química entre o inibidor e a matriz de sol-gel, de onde resultou a perda de propriedades protectoras do sistema combinado. Atendendo aos problemas provocados pela adição directa dos inibidores na formulação sol-gel procurou-se, numa quarta etapa, formas alternativas de incorporação. Na primeira, produziu-se uma camada de titania nanoporosa na superfície da liga metálica que serviu de reservatório para os inibidores. O revestimento sol-gel foi aplicado por cima da camada nanoporosa. Os inibidores armazenados nos poros actuam quando o substrato fica exposto ao ambiente agressivo. Numa segunda, os inibidores foram armazenados em nano-reservatórios de sílica ou em nanoargilas (halloysite), os quais foram revestidos por polielectrólitos montados camada a camada. A terceira alternativa consistiu no uso de nano-fios de molibdato de cério amorfo como inibidores anticorrosivos nanoparticulados. Os nano-reservatórios foram incorporados durante a síntese do sol-gel. Qualquer das abordagens permitiu eliminar o efeito negativo do inibidor sobre a estabilidade da matriz do sol-gel. Os revestimentos sol-gel desenvolvidos neste trabalho apresentaram protecção anticorrosiva activa e capacidade de auto-reparação. Os resultados obtidos mostraram o elevado potencial destes revestimentos para a protecção anticorrosiva da liga de alumínio 2024.
Resumo:
A paradigm shift is taking place from using transplanting tissue and synthetic implants to a tissue engineering approach that aims to regenerate damaged tissues by combining cells from the body with highly porous scaffold biomaterials, which act as templates, guiding the growth of new tissue. The central focus of this thesis was to produce porous glass and glass-ceramic scaffolds that exhibits a bioactive and biocompatible behaviour with specific surface reactivity in synthetic physiological fluids and cell-scaffold interactions, enhanced by composition and thermal treatments applied. Understanding the sintering behaviour and the interaction between the densification and crystallization processes of glass powders was essential for assessing the ideal sintering conditions for obtaining a glass scaffolds for tissue engineering applications. Our main goal was to carry out a comprehensive study of the bioactive glass sintering, identifying the powder size and sintering variables effect, for future design of sintered glass scaffolds with competent microstructures. The developed scaffolds prepared by the salt sintering method using a 3CaO.P2O5 - SiO2 - MgO glass system, with additions of Na2O with a salt, NaCl, exhibit high porosity, interconnectivity, pore size distribution and mechanical strength suitable for bone repair applications. The replacement of 6 % MgO by Na2O in the glass network allowed to tailor the dissolution rate and bioactivity of the glass scaffolds. Regarding the biological assessment, the incorporation of sodium to the composition resulted in an inibition cell response for small periods. Nevertheless it was demonstrated that for 21 days the cells response recovered and are similar for both glass compositions. The in vitro behaviour of the glass scaffolds was tested by introducing scaffolds to simulated body fluid for 21 days. Energy-dispersive Xray spectroscopy and SEM analyses proved the existence of CaP crystals for both compositions. Crystallization forming whitlockite was observed to affect the dissolution behaviour in simulated body fluid. By performing different heat treatments, it was possible to control the bioactivity and biocompatability of the glass scaffolds by means of a controlled crystallization. To recover and tune the bioactivity of the glass-ceramic with 82 % crystalline phase, different methods have been applied including functionalization using 3- aminopropyl-triethoxysilane (APTES). The glass ceramic modified surface exhibited an accelerated crystalline hydroxyapatite layer formation upon immersion in SBF after 21 days while the as prepared glass-ceramic had no detected formation of calcium phosphate up to 5 months. A sufficient mechanical support for bone tissue regeneration that biodegrade later at a tailorable rate was achievable with the glass–ceramic scaffold. Considering the biological assessment, scaffolds demonstrated an inductive effect on the proliferation of cells. The cells showed a normal morphology and high growth rate when compared to standard culture plates. This study opens up new possibilities for using 3CaO.P2O5–SiO2–MgO glass to manufacture various structures, while tailoring their bioactivity by controlling the content of the crystalline phase. Additionally, the in vitro behaviour of these structures suggests the high potential of these materials to be used in the field of tissue regeneration.
Resumo:
Tese de mestrado em Química Tecnológica, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2016
Resumo:
Dissertação de Mestrado, Ciências Biomédicas, 18 de Março de 2016, Universidade dos Açores.
Resumo:
Myoglobin (Mb) is among the cardiac biomarkers playing a major role in urgent diagnosis of cardiovascular diseases. Its monitoring in point-of-care is therefore fundamental. Pursuing this goal, a novel biomimetic ionophore for the potentiometric transduction of Mb is presented. It was synthesized by surface molecular imprinting (SMI) with the purpose of developing highly efficient sensor layers for near-stereochemical recognition of Mb. The template (Mb) was imprinted on a silane surface that was covalently attached to silica beads by means of self-assembled monolayers. First the silica was modified with an external layer of aldehyde groups. Then, Mb was attached by reaction with its amine groups (on the external surface) and subsequent formation of imine bonds. The vacant places surrounding Mb were filled by polymerization of the silane monomers 3-aminopropyltrimethoxysilane (APTMS) and propyltrimethoxysilane (PTMS). Finally, the template was removed by imine cleavage after treatment with oxalic acid. The results materials were finely dispersed in plasticized PVC selective membranes and used as ionophores in potentiometric transduction. The best analytical features were found in HEPES buffer of pH 4. Under this condition, the limits of detection were of 1.3 × 10−6 mol/L for a linear response after 8.0 × 10−7 mol/L with an anionic slope of −65.9 mV/decade. The imprinting effect was tested by preparing non-imprinted (NI) particles and employing these materials as ionophores. The resulting membranes showed no ability to detect Mb. Good selectivity was observed towards creatinine, sacarose, fructose, galactose, sodium glutamate, and alanine. The analytical application was conducted successfully and showed accurate and precise results.
Resumo:
Les brosses de polyélectrolytes font l’objet d’une attention particulière pour de nombreuses applications car elles présentent la capacité de changer de conformation et, par conséquent, de propriétés de surface en réponse aux conditions environnementales appliquées. Le contrôle des principaux paramètres de ces brosses telles que l'épaisseur, la composition et l'architecture macromoléculaire, est essentiel pour obtenir des polymères greffés bien définis. Ceci est possible avec la Polymérisation Radicalaire par Transfert d’Atomes - Initiée à partir de la Surface (PRTA-IS), qui permet la synthèse de brosses polymériques de manière contrôlée à partir d’une couche d'amorceurs immobilisés de manière covalente sur une surface. Le premier exemple d’une synthèse directe de brosses de poly(acide acrylique) (PAA) par polymérisation radicalaire dans l’eau a été démontré. Par greffage d’un marqueur fluorescent aux brosses de PAA et via l’utilisation de la microscopie de fluorescence par réflexion totale interne, le dégreffage du PAA en temps réel a pu être investigué. Des conditions environnementales de pH ≥ 9,5 en présence de sel, se sont avérées critiques pour la stabilité de la liaison substrat-amorceur, conduisant au dégreffage du polymère. Afin de protéger de l’hydrolyse cette liaison substrat-amorceur sensible et prévenir le dégreffage non souhaité du polymère, un espaceur hydrophobique de polystyrène (PS) a été inséré entre l'amorceur et le bloc de PAA stimuli-répondant. Les brosses de PS-PAA obtenues étaient stables pour des conditions extrêmes de pH et de force ionique. La réponse de ces brosses de copolymère bloc a été étudiée in situ par ellipsométrie, et le changement réversible de conformation collapsée à étirée, induit par les variations de pH a été démontré. De plus, des différences de conformation provenant des interactions du bloc de PAA avec des ions métalliques de valence variable ont été obtenues. Le copolymère bloc étudié semble donc prometteur pour la conception de matériaux répondant rapidement a divers stimuli. Par la suite, il a été démontré qu’un acide phosphonique pouvait être employé en tant qu’ amorceur PRTA-IS comme alternative aux organosilanes. Cet amorceur phosphonate a été greffé pour la première fois avec succès sur des substrats de silice et une PRTA-IS en milieux aqueux a permis la synthèse de brosses de PAA et de poly(sulfopropyl méthacrylate). La résistance accrue à l’hydrolyse de la liaison Sisubstrat-O- Pamorceur a été confirmée pour une large gamme de pH 7,5 à 10,5 et a permis l’étude des propriétés de friction des brosses de PAA sous différentes conditions expérimentales par mesure de forces de surface. Malgré la stabilité des brosses de PAA à haute charge appliquée, les études des propriétés de friction ne révèlent pas de changement significatif du coefficient de friction en fonction du pH et de la force ionique.
Resumo:
The influence of the chemical composition and silylation of mesoporous MCM-41 materials on the photochromic behaviour of adsorbed spiropyran (BIPS) and 6-nitrospiropyran was studied. Upon incorporation, the spiropyrans underwent ring opening to form either zwitterionic merocyanine or its corresponding O-protonated form. In all silica MCM-41 or in the MCM-41 containing aluminium, the O-protonated merocyanine was predominantly formed. In the case of MCM-41 modified by silylation of the OH groups, a mixture of zwitterionic merocyanine and spiropyran was present. The photochromic response was studied by means of steady-state irradiation and by laser flash photolysis. Steady-state irradiation (λ > 450 nm) of the solid samples gives rise in all cases to an intensity decrease of the absorption bands corresponding to either the protonated or the unprotonated merocyanine form (reverse photochromism). In contrast, laser flash photolysis at 308 nm of spiropyrans supported on silylated MCM-41 allows observation of the photochemical ring opening of residual spiropyran to the corresponding zwitterionic form (normal photochromism).