936 resultados para MAG filler wire welding
Resumo:
This paper reports on a low frequency piezoelectric energy harvester that scavenges energy from a wire carrying an AC current. The harvester is described, fabricated and characterized. The device consists of a silicon cantilever with integrated piezoelectric capacitor and proof-mass that incorporates a permanent magnet. When brought close to an AC current carrying wire, the magnet couples to the AC magnetic field from a wire, causing the cantilever to vibrate and generate power. The measured average power dissipated across an optimal resistive load was 1.5 μW. This was obtained by exciting the device into mechanical resonance using the electro-magnetic field from the 2 A source current. The measurements also reveal that the device has a nonlinear response that is due to a spring hardening mechanism.
Resumo:
The PhD project that will be presented in this thesis is focused on the study and optimization of the production process for the manufacturing of electrical powertrain components in the automotive field using the laser beam welding process (LBW). The objective is to define, through experimental activities, an optimized process condition for applications in the electrical field that can be generalized, that is, which guarantees its reproducibility as the types of connections vary and which represents the basis for extending the method to future applications in e-mobility sector. The work developed along two lines of research, the convergence of which made it possible to create prototypes of battery modules based on different types of lithium-ion cells and stator windings for electric motors. On the one hand, the different welding configurations involving the production of batteries based on pouch cells and therefore the welding of aluminum and copper in dissimilar configuration were studied, while for the prismatic cells only one configuration was analyzed. On the other hand, the welding of pure copper hairpins with rectangular shape in edge joint configuration was studied for the production of stator windings. The experimental tests carried out have demonstrated the feasibility of using the LBW process for the production of electric powertrain components entirely designed and developed internally as the types of materials and welding configurations vary; the methodologies required for the characterization methods, necessary for the end-of-line tests, for the evaluation of the properties of the different joint configurations and components (battery and electric motor) were also defined with the aim of obtaining the best performance. The entire doctorate program was conducted in collaboration with Ferrari Auto S.p.A. and the direct industrial application of the issues addressed has been faced.
Resumo:
Società Azionaria Prodotti Asfaltico Bituminosi Affini (S.A.P.A.B.A. s.r.l.) is an asphalt/aggregate production plant located in Bologna, Italy. The resulting dirt and mud from the washing process is stored at specific sedimentation lakes close to the plant and are referred to as waste silt. The initiative and motivation of the current research follows the 12th objective of the sustainable development goals proposed by the United Nations. As a result, the overall aim of the current study was to reduce the impact of waste mineral fillers through recycling in new paving solutions. Considering three paving types of cement-bound, geopolymer-bound and asphalt pavements the following objectives were set: 1) To investigate the possibility of recycling waste silt in cement-bound paving solution; 2) To explore the feasibility of producing geopolymer-bound paving solutions containing waste silt; 3) To study the potential of using waste silt as fillers in different asphalt pavements. The first objective was achieved by utilizing waste silt into cement-bound materials. For this purpose, the by-product was introduced to cement mortars and was partially replaced (20%) with the natural sand. Moreover, statistical models were used to produce concrete paving blocks. The second objective was pursued by studying the feasibility of using the waste silt as a filler in geopolymer cement products. Following a comprehensive review, the silt was thermally calcined and used as filler in geopolymer cement and paving blocks. The third objective was achieved by evaluating the rheological and mechanical performance of hot mix, porous and semi-flexible asphalt containing waste silt. The limestone filler of a hot mix asphalt was replaced with thermally and untreated waste silt. To sum up, different paving blocks and asphalt pavements mixtures containing waste silt were proposed that presented acceptable performance when compared to different national and European standards.
Resumo:
A robust and well-distributed backbone charging network is the priority to ensure widespread electrification of road transport, providing a driving experience similar to that of internal combustion engine vehicles. International standards set multiple technical targets for on-board and off-board electric vehicle chargers; output voltage levels, harmonic emissions, and isolation requirements strongly influence the design of power converters. Additionally, smart-grid services such as vehicle-to-grid and vehicle-to-vehicle require the implementation of bi-directional stages that inevitably increase system complexity and component count. To face these design challenges, the present thesis provides a rigorous analysis of four-leg and split-capacitor three-phase four-wire active front-end topologies focusing on the harmonic description under different modulation techniques and conditions. The resulting analytical formulation paves the way for converter performance improvements while maintaining regulatory constraints and technical requirements under control. Specifically, split-capacitor inverter current ripple was characterized as providing closed-form formulations valid for every sub-case ranging from synchronous to interleaved PWM. Outcomes are the base for a novel variable switching PWM technique capable of mediating harmonic content limitation and switching loss reduction. A similar analysis is proposed for four-leg inverters with a broad range of continuous and discontinuous PWM modulations. The general superiority of discontinuous PWM modulation in reducing switching losses and limiting harmonic emission was demonstrated. Developments are realized through a parametric description of the neutral wire inductor. Finally, a novel class of integrated isolated converter topologies is proposed aiming at the neutral wire delivery without employing extra switching components rather than the one already available in typical three-phase inverter and dual-active-bridge back-to-back configurations. The fourth leg was integrated inside the dual-active-bridge input bridge providing relevant component count savings. A novel modified single-phase-shift modulation technique was developed to ensure a seamless transition between working conditions like voltage level and power factor. Several simulations and experiments validate the outcomes.
Resumo:
The study of turbulence is also nowadays a problem that does not have solution from the mathematical point of view due to the lack of solution to link the mean part of the flow with the fluctuating one. To solve this problem, in the CICLoPE laboratory of Predappio, experiments on different type of jets are performed in order to derive a closure model able to close our mathematical model. One of the most interesting type of jet that could be studied is the planar turbulent free jet which is a two dimensional canonical jet characterized by the self-similarity condition of the velocity profiles. To study this particular jet, a new facility was built. The aim of this project is to characterize the jet at different distances from the nozzle exit, for different values of Reynolds number, to demonstrate that the self-similarity condition is respected. To do that, the evaluation of quantities such as spreading rate, centerline velocity decay and relation between fluctuations and mean part of the flow has to be obtain. All these parameters could be detected thanks to the use of single and X hot-wire anemometry with which it is possible to analyzed the fluctuating behaviour of the flow by associating to an electric signal a physical variable expressed in terms of velocity. To justify the data obtain by the measures, a comparison with results coming from the literature has to be shown.
Resumo:
When it comes to designing a structure, architects and engineers want to join forces in order to create and build the most beautiful and efficient building. From finding new shapes and forms to optimizing the stability and the resistance, there is a constant link to be made between both professions. In architecture, there has always been a particular interest in creating new shapes and types of a structure inspired by many different fields, one of them being nature itself. In engineering, the selection of optimum has always dictated the way of thinking and designing structures. This mindset led through studies to the current best practices in construction. However, both disciplines were limited by the traditional manufacturing constraints at a certain point. Over the last decades, much progress was made from a technological point of view, allowing to go beyond today's manufacturing constraints. With the emergence of Wire-and-Arc Additive Manufacturing (WAAM) combined with Algorithmic-Aided Design (AAD), architects and engineers are offered new opportunities to merge architectural beauty and structural efficiency. Both technologies allow for exploring and building unusual and complex structural shapes in addition to a reduction of costs and environmental impacts. Through this study, the author wants to make use of previously mentioned technologies and assess their potential, first to design an aesthetically appreciated tree-like column with the idea of secondly proposing a new type of standardized and optimized sandwich cross-section to the construction industry. Parametric algorithms to model the dendriform column and the new sandwich cross-section are developed and presented in detail. A catalog draft of the latter and methods to establish it are then proposed and discussed. Finally, the buckling behavior of this latter is assessed considering standard steel and WAAM material properties.
Resumo:
The scope of this study is to design an automatic control system and create an automatic x-wire calibrator for a facility named Plane Air Tunnel; whose exit creates planar jet flow. The controlling power state as well as automatic speed adjustment of the inverter has been achieved. Thus, the wind tunnel can be run with respect to any desired speed and the x-wire can automatically be calibrated at that speed. To achieve that, VI programming using the LabView environment was learned, to acquire the pressure and temperature, and to calculate the velocity based on the acquisition data thanks to a pitot-static tube. Furthermore, communication with the inverter to give the commands for power on/off and speed control was also done using the LabView VI coding environment. The connection of the computer to the inverter was achieved by the proper cabling using DAQmx Analog/Digital (A/D) input/output (I/O). Moreover, the pressure profile along the streamwise direction of the plane air tunnel was studied. Pressure tappings and a multichannel pressure scanner were used to acquire the pressure values at different locations. Thanks to that, the aerodynamic efficiency of the contraction ratio was observed, and the pressure behavior was related to the velocity at the exit section. Furthermore, the control of the speed was accomplished by implementing a closed-loop PI controller on the LabView environment with and without using a pitot-static tube thanks to the pressure behavior information. The responses of the two controllers were analyzed and commented on by giving suggestions. In addition, hot wire experiments were performed to calibrate automatically and investigate the velocity profile of a turbulent planar jet. To be able to analyze the results, the physics of turbulent planar jet flow was studied. The fundamental terms, the methods used in the derivation of the equations, velocity profile, shear stress behavior, and the effect of vorticity were reviewed.
Resumo:
Passive scalars measurements in turbulent pipe flows are difficult to perform and only few experimental data are available in literature. The present thesis deals with the experimental acquisition and study of the first turbulent temperature profile inside the CICLoPE wind tunnel through cold wire anemometry technique at Reτ = 6000 and Reτ = 9500. This type of measurements provides not only useful data on temperature (and passive scalars) behaviour and statistics in turbulent pipe flows, but could be used also for temperature correction of turbulent velocity profiles. In the present work, subsequent acquisitions of temperature and velocity profiles has been performed at the same Reynolds number and in the same points, through cold wire and hot wire techniques respectively. Taking as reference data from both DNS and experimental campaigns, the activity has been carried out obtaining satisfactory results. We have verified the presence of turbulent temperature profile inside the CICLoPE wind tunnel and then studied its statistical and spectral behaviours obtaining results in agreement with existing data from Hishida, Nagano, and Ferro. Cold wire temperature data were then used to correct hot wire velocity data, obtaining a slightly improvement in the near wall region.
Resumo:
Nel seguente lavoro di tesi sperimentale è stato svolto uno studio su film di poli(esametilen furanoato) additivato con filler antiossidanti estratti da una materia prima lignocellulosica, la corteccia di betulla. Tale studio ha lo scopo di incrementare le proprietà meccaniche e soprattutto conservative dei film di PHF per applicazioni nel campo del packaging alimentare. Il poli(esametilen furanoato) è un poliestere i cui monomeri di sintesi possono essere ottenuti da fonti rinnovabili, tale caratteristica lo rende completamente bio-based e di elevato interesse per l’ottenimento di materiali sostenibili. Nella fase iniziale dello studio è stato sintetizzato il polimero in esame tramite una sintesi di tipo solvent-free, in accordo con le attuali strategie sintetiche che mirano a ridurre l’impatto del solvente. Tale polimero è stato quindi caratterizzato tramite NMR e GPC. Sono state poi preparate quattro miscele di polimero additivato, due differenti composizioni per ciascuno dei due filler disponibili. Le miscele sono state preparate tramite solvent casting e in seguito stampate tramite pressofusione per ottenere dei film. È stata svolta una caratterizzazione dei film ottenuti, di tipo morfologica (SEM), termica (TGA e DSC), meccanica, comportamento barriera e con analisi antiossidanti. I filler hanno mostrato una buona miscibilità con l’omopolimero e non hanno causato interferenze nel comportamento termico. È stato osservato un miglioramento nella flessibilità dei film in tutte le miscele studiate e un aumento dell’allungamento a rottura nelle composizioni con quantità di filler pari al 5%. Le proprietà barriera si sono mantenute in linea con quelle dell’omopolimero e ancora migliori dei poliesteri attualmente in commercio. Infine, l’aggiunta del filler ha reso il film attivo per lo scavenging di radicali, valutato attraverso il test con DPPH, confermando il trasferimento delle proprietà antiossidanti dei filler alle miscele polimeriche.
Resumo:
Additive Manufacturing (AM), also known as “3D printing”, is a recent production technique that allows the creation of three-dimensional elements by depositing multiple layers of material. This technology is widely used in various industrial sectors, such as automotive, aerospace and aviation. With AM, it is possible to produce particularly complex elements for which traditional techniques cannot be used. These technologies are not yet widespread in the civil engineering sector, which is slowly changing thanks to the advantages of AM, such as the possibility of realizing elements without geometric restrictions, with less material usage and a higher efficiency, in particular employing Wire-and-Arc Additive Manufacturing (WAAM) technology. Buildings that benefit most from AM are all those structures designed using form-finding and free-form techniques. These include gridshells, where joints are the most critical and difficult elements to design, as the overall behaviour of the structure depends on them. It must also be considered that, during the design, the engineer must try to minimize the structure's own weight. Self-weight reductions can be achieved by Topological Optimization (TO) of the joint itself, which generates complex geometries that could not be made using traditional techniques. To sum up, weight reductions through TO combined with AM allow for several potential benefits, including economic ones. In this thesis, the roof of the British Museum is considered as a case study, analysing the gridshell structure of which a joint will be chosen to be designed and manufactured, using TO and WAAM techniques. Then, the designed joint will be studied in order to understand its structural behaviour in terms of stiffness and strength. Finally, a printing test will be performed to assess the production feasibility using WAAM technology. The computational design and fabrication stages were carried out at Technische Universität Braunschweig in Germany.
Resumo:
Although being studied only for few years, Wire and Arc Additive Manufacturing (WAAM) will become the predominant way of producing stainless-steel elements in a near-like future. The analysis and study of such elements has yet to be defined in a proper way, but the projects regarding this subject are innovating more and more thanks to the findings discovered by the latter. This thesis is focused on an initial stage on the analysis of mechanical and geometrical properties of such stainless-steel elements produced by MX3D laboratories in Amsterdam, and to perform a calibration of the design strength values by means of Annex D of Eurocode 0, which talks about the analysis of the semi-probabilistic safety factors, hence the definition of characteristic values. Moreover, after testing the stainless-steel specimens by means of strain gauges and after obtaining mechanical and geometrical properties, a statistical analysis of such properties and an evaluation of characteristic values is performed. After this, there is to execute the calibration of design strength values of WAAM inclined bars and intersections.
Resumo:
A Atenção ao Pré-natal e Puerpério é fundamental para garantir o bem-estar e a saúde do binômio gestante-feto/puérpera-bebê. Diante da relevância desta ação programática, o presente estudo objetivou qualificar a atenção ao Pré-natal e Puerpério realizado na USF do Parque Estrela em Magé, RJ. Foi realizada uma intervenção com duração de quatro meses, onde foram realizadas ações visando ampliar a cobertura, mapear as gestantes de risco, melhorar a adesão, registros das informações e a qualidade da atenção ao Pré-natal e Puerpério realizado na Unidade, realizar promoção da saúde e ações de promoção à saúde e prevenção de doenças nas famílias das gestantes. Foi utilizado o Manual Atenção ao Pré-natal de Baixo Risco, do Ministério da Saúde (2012) e os profissionais da equipe (técnica em enfermagem e os agentes comunitários de saúde) foram capacitados para a utilização do referido Manual. Com o intuito de melhorar o registro das informações foi implantada a ficha espelho de Pré-natal. Durante a intervenção foram atendidas 30 gestantes. A cobertura do Pré-natal aumentou para 60%, a proporção de gestantes com vacina contra a Hepatite B para 80%, a proporção de gestantes com exame de mamas e vacina antitetânica para 100%. Todas as gestantes tiveram a consulta em dia de acordo com os períodos preconizados pelo protocolo, a avaliação de risco gestacional, o registro do IMC na última consulta, a prescrição de suplementação de sulfato ferroso e ácido fólico conforme protocolo, todos os exames laboratoriais preconizados para a primeira consulta, receberam orientação nutricional, sobre aleitamento materno exclusivo, cuidados com o recém-nascido, anticoncepção no pós-parto, riscos do tabagismo, álcool e drogas na gestação. A intervenção realizada trouxe melhorias significativas ao serviço de Pré-natal prestado na Unidade. No entanto, ainda é necessário aumentar a captação precoce das gestantes, a proporção de gestantes com o exame ginecológico e de mamas, com vacina contra a Hepatite B em dia e avaliação de saúde bucal de forma a garantir a integralidade do serviço de Pré-natal oferecido nesta a Unidade de Saúde da Família.
Resumo:
Facial cosmetic procedures are increasingly requested, and dermal filler materials have been widely used as a nonsurgical option since the 1980s. However, injectable fillers have been implicated in local adverse reactions. Therefore, the aim of this article was to describe the use of fine needle aspiration cytology (FNAC) in the diagnosis of foreign-body reactions to the perioral injection of dermal fillers. A 69-year-old woman presented with a painful nodule on her right nasolabial fold. Intraoral FNAC was performed, and cytologic smears were examined under optical and polarized light microscopy, showing birefringent microspheres, confirming the diagnosis of an adverse reaction caused by polymethyl methacrylate filler. FNAC is a less invasive method to confirm the diagnosis of adverse reactions caused by perioral cosmetic dermal fillers.
Resumo:
Super elastic nitinol (NiTi) wires were exploited as highly robust supports for three distinct crosslinked polymeric ionic liquid (PIL)-based coatings in solid-phase microextraction (SPME). The oxidation of NiTi wires in a boiling (30%w/w) H2O2 solution and subsequent derivatization in vinyltrimethoxysilane (VTMS) allowed for vinyl moieties to be appended to the surface of the support. UV-initiated on-fiber copolymerization of the vinyl-substituted NiTi support with monocationic ionic liquid (IL) monomers and dicationic IL crosslinkers produced a crosslinked PIL-based network that was covalently attached to the NiTi wire. This alteration alleviated receding of the coating from the support, which was observed for an analogous crosslinked PIL applied on unmodified NiTi wires. A series of demanding extraction conditions, including extreme pH, pre-exposure to pure organic solvents, and high temperatures, were applied to investigate the versatility and robustness of the fibers. Acceptable precision of the model analytes was obtained for all fibers under these conditions. Method validation by examining the relative recovery of a homologous group of phthalate esters (PAEs) was performed in drip-brewed coffee (maintained at 60 °C) by direct immersion SPME. Acceptable recoveries were obtained for most PAEs in the part-per-billion level, even in this exceedingly harsh and complex matrix.
Resumo:
Energy dispersive X-ray spectroscopy microanalysis (EDX), scanning electron microscopy (SEM), and Archimedes' Principle were used to determine the characteristics of inorganic filler particles in five dental alginates, including Cavex ColorChange (C), Hydrogum 5 (H5), Hydrogum (H), Orthoprint (O), and Jeltrate Plus (JP). The different alginate powders (0.5 mg) were fixed on plastic stubs (n = 5) and sputter coated with carbon for EDX analysis, then coated with gold, and observed using SEM. Volume fractions were determined by weighing a sample of each material in water before and after calcining at 450(°)C for 3 h. The alginate materials were mainly composed of silicon (Si) by weight (C-81.59%, H-79.89%, O-78.87%, H5-77.95%, JP-66.88%, wt). The filler fractions in volume (vt) were as follows: H5-84.85%, JP-74.76%, H-70.03%, O-68.31%, and C-56.10%. The tested materials demonstrated important differences in the inorganic elemental composition, filler fraction, and particle morphology.