892 resultados para Low bandgap materials
Resumo:
TiTanate NanoTubes (TTNT) were synthesized by hydrothermal alkali treatment of TiO2 anatase followed by repeated washings with distinct degrees of proton exchange. TTNT samples with different sodium contents were characterized, as synthesized and after heattreatment (200-800ºC), by X-ray diffraction, scanning and transmission electron microscopy, electron diffraction, thermal analysis, nitrogen adsorption and spectroscopic techniques like FTIR and UV-Vis diffuse reflectance. It was demonstrated that TTNTs consist of trititanate structure with general formula NaxH2−xTi3O7·nH2O, retaining interlayer water in its multiwalled structure. The removal of sodium reduces the amount of water and contracts the interlayer space leading, combined with other factors, to increased specific surface area and mesopore volume. TTNTs are mesoporous materials with two main contributions: pores smaller than 10 nm due to the inner volume of nanotubes and larger pores within 5-60 nm attributed to the interparticles space. Chemical composition and crystal structure of TTNTs do not depend on the average crystal size of the precursor TiO2-anatase, but this parameter affects significantly the morphology and textural properties of the nanostructured product. Such dependence has been rationalized using a dissolution-recrystallization mechanism, which takes into account the dissolution rate of the starting anatase and its influence on the relative rates of growth and curving of intermediate nanosheets. The thermal stability of TTNT is defined by the sodium content and in a lower extent by the crystallinity of the starting anatase. It has been demonstrated that after losing interlayer water within the range 100-200ºC, TTNT transforms, at least partially, into an intermediate hexatitanate NaxH2−xTi6O13 still retaining the nanotubular morphology. Further thermal transformation of the nanostructured tri- and hexatitanates occurs at higher or lower temperature and follows different routes depending on the sodium content in the structure. At high sodium load (water washed samples) they sinter and grow towards bigger crystals of Na2Ti3O7 and Na2Ti6O13 in the form of rods and ribbons. In contrast, protonated TTNTs evolve to nanotubes of TiO2(B), which easily convert to anatase nanorods above 400ºC. Besides hydroxyls and Lewis acidity typical of titanium oxides, TTNTs show a small contribution of protonic acidity capable of coordinating with pyridine at 150ºC, which is lost after calcination and conversion into anatase. The isoeletric point of TTNTs was measured within the range 2.5-4.0, indicating behavior of a weak acid. Despite displaying semiconductor characteristics exhibiting typical absorption in the UV-Vis spectrum with estimated bandgap energy slightly higher than that of its TiO2 precursor, TTNTs showed very low performance in the photocatalytic degradation of cationic and anionic dyes. It was concluded that the basic reason resides in its layered titanate structure, which in comparison with the TiO2 form would be more prone to the so undesired electron-hole pair recombination, thus inhibiting the photooxidation reactions. After calcination of the protonated TTNT into anatase nanorods, the photocatalytic activity improved but not to the same level as that exhibited by its precursor anatase
Resumo:
Background and Objectives: Bone remodeling is characterized as a cyclic and lengthy process. It is currently accepted that not only this dynamics is triggered by a biological process, but also biochemical, electrical, and mechanical stimuli are key factors for the maintenance of bone tissue. The hypothesis that low-level laser therapy (LLLT) may favor bone repair has been suggested. The purpose of this study was to evaluate the bone repair in defects created in rat lower jaws after stimulation with infrared LLLT directly on the injured tissue.Study Design/Materials and Methods: Bone defects were prepared on the mandibles of 30 Holtzman rats allocated in two groups (n = 15), which were divided in three evaluation period (15, 45, and 60 days), with five animals each. control group-no treatment of the defect; laser group-single laser irradiation with a GaAlAs semiconductor diode laser device (lambda = 780 nm; P = 35 mW t = 40 s; circle minus = 1.0 mm; D = 178 J/cm(2); E = 1.4 J) directly on the defect area. The rats were sacrificed at the preestablished periods and the mandibles were removed and processed for staining with hematoxylin and eosin, Masson's Trichrome and picrosirius techniques.Results: the histological results showed bone formation in both groups. However, the laser group exhibited an advanced tissue response compared to the control group, abbreviating the initial inflammatory reaction and promoting rapid new bone matrix formation at 15 and 45 days (P < 0. 05). on the other hand, there were no significant differences between the groups at 60 days.Conclusion: the use of infrared LLLT directly to the injured tissue showed a biostimulating effect on bone remodeling by stimulating the modulation of the initial inflammatory response and anticipating the resolution to normal conditions at the earlier periods. However, there were no differences between the groups at 60 days.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Secondary caries is the main cause of direct restoration replacement. The purpose of this study was to analyze enamel adjacent to different restorative materials after in situ cariogenic challenge using polarized-light microscopy (PLM), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDS). Twelve volunteers, with a low level of dental plaque, a low level of mutans streptococci, and normal salivary flow, wore removable palatal acrylic appliances containing enamel specimens restored with Z250 composite, Freedom composite, Fuji IX glass-ionomer cement, or Vitremer resin-modified glass-ionomer for 14 days. Volunteers dripped one drop of 20% sucrose solution (n = 10) or distilled water (control group) onto each specimen 8 times per day. Specimens were removed from the appliances and submitted to PLM for examination of the lesion area (in mm(2)), followed by dehydration, gold-sputtering, and submission to SEM and EDS. The calcium (Ca) and phosphorus (P) contents were evaluated in weight per cent (%wt). Differences were found between Z250 and Vitremer, and between Z250 and FujiIX, when analyzed using PLM. Energy-dispersive X-ray analysis results showed differences between the studied materials regarding Ca %wt. In conclusion, enamel adjacent to glass-ionomer cement presented a higher Ca %wt, but this material did not completely prevent enamel secondary caries under in situ cariogenic challenge.
Resumo:
Statement of the Problem: The effectiveness of low-intensity red laser for activating a bleaching gel and its effect in pulp temperature was not investigated in dental literature. Purpose: The objective of this study was to assess the effectiveness of low-intensity red laser for activating a bleaching gel, as well as its effect in temperature of the bleaching gel and the dental pulp. Materials and Methods: Forty extracted bovine teeth were immersed in a solution of coffee 14 days for darkening. The initial colors were recorded by spectrophotometric analysis. The specimens were randomly distributed into two groups (N = 20): the control, which did not receive light and the experimental group that received light from an appliance fitted with three red light-emitting laser diodes (? = 660 nm). A green-colored, 35% H2O2based bleaching gel was applied for 30 minutes, and changed three times. After bleaching, the colors were again measured to obtain the L*a*b* values. Color variation was calculated (?E) and the data submitted to the non-paired t-test (5%). To assess temperature, 10 human incisors were prepared, in which one thermocouple was placed on the bleaching gel applied on the surface of the teeth and another inside the pulp chamber. Results: There was a significant difference between the groups (p = 0.016), and the experimental group presented a significantly higher mean variation (7.21 +/- 2.76) in comparison with the control group (5.37 +/- 1.76). There was an increase in pulp temperature, but it was not sufficient to cause damage to the pulp. Conclusion: Bleaching gel activation with low-intensity red laser was capable of increasing the effectiveness of bleaching treatment and did not increase pulp temperature to levels deleterious to the pulp. CLINICAL SIGNIFICANCE The application of a low-intensity red laser was effective for activating a bleaching gel with green dye, without any deleterious increases in pulpal temperature. (J Esthet Restor Dent 24:126134, 2012)
Resumo:
The recent theoretical and experimental activities in positronium (Ps) scattering by atoms and molecules are reviewed with special emphasis at low energies. We critically compare the results of different groups - theoretical and experimental. The theoretical approaches considered include the R-matrix and close-coupling methods applied to Ps-H, Ps-He and Ps-Li scattering, and a coupled-channel approach with a nonlocal model potential for Ps scattering by H, He, H-2, Ne, Ar, Li, Na, K, Rb, Cs and Ps and for pickoff quenching in Ps-He scattering. Results for scattering lengths, partial. total and differential cross-sections as well as resonance and binding energies in different systems are discussed. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Complex electro-optical analysis is a very useful approach to separate different kinetic processes that occur during ionic insertion reactions in electrochromic oxide materials. In this paper, we use this type of combined technique to investigate ionic and optical changes in different oxide host systems, i.e., in two oxide hosts, specifically WO3 and Nb2O5. A comparison of their electro-optical responses revealed the presence of an ionic trapping contribution to the kinetics of the coloring sites, which was named here as coloring ionic trapping state. As expected, this coloring trapping process is slower in Nb2O5 since the reduction potential of Nb2O5 is more negative (more energy is needed for a higher degree of coloration). A phenomenological solid-state model that encompasses homogeneous charge transfer and valence trapping was proposed to explain the coloring ionic trapping process. Basically the model is able to explain how ionic dynamics at low frequency region, i.e., the slower kinetic step, controls the coloring kinetics, i.e., how it is capable to regulate the coloring rates.Optical transient analyses demonstrated the possibility of the presence of more than one coloring ionic trap, indicating the complexity of the processes involved in coloration phenomenon in metal oxide host systems. (C) 2008 Published by Elsevier Ltd.
Resumo:
The demand by high performance materials that have to support severe service conditions at a reasonable cost has been forcing the powder metallurgy to improve constantly. The most recent and more important innovation in the area is the process of powder injection.Powder injection molding (PIM) is a technology capable of producing a new range of components from powders. This advanced technology overcomes the existent limitations in the forming of products with complex geometry. The process presents countless variations which are used in the industry today. Invariably, it consists of mixing the powders and a thermo-plastic binder, injecting the mass in the mold in the wanted form, debinding, sintering and making optional secondary operations, as for example, machinery.The purpose of this work is to review the metal injection molding techniques and apply the low pressure injection molding process to family of parts using metallic powder with 10 mum particle size. This work also comments the design and construction of a low pressure injection machine and injection molds. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Objective: the aim of the present study was to evaluate the effect of low-intensity laser therapy on the wound healing process treated with steroid. Background Data: Various biological effects have been associated with low-level laser therapy (LLLT). Materials and Methods: Forty-eight rats were used, and after execution of a wound on the dorsal region of each animal, they were divided into 4 groups (n = 12), receiving the following treatments: G1 (control), wounds and animals received no treatment; G2, wounds were treated with LLLT; G3, animals received an intraperitoneal injection of steroid dosage (2 mg/kg of body weight); G4, animals received steroid and wounds were treated with LLLT. The laser emission device used was a GaAIAs (904 nm), in a contact mode, with 2.75 mW gated with 2.900 Hz during 120 sec (33 J/cm(2)). After the period of 3, 7, and 14 days, the animals were sacrificed and the parts sent to histological processing and dyed using hematoxylin and eosin (HE) and Masson trichromium (MT) techniques. Results: the results have shown that the wounds treated with steroid had a delay in healing, while LLLT accelerated the wound healing process. Also, wounds treated with laser in the animals treated with steroid presented a differentiated healing process with a larger collagen deposition and also a decrease in both the inflamatory infiltrated and the delay on the wound healing process. Conclusion: LLLT accelerated healing, caused by the steroid, acting as a biostimulative coadjutant agent, balancing the undesirable effects of cortisone (in the tissue healing process.
Resumo:
SrBi2Nb2O9 (SBN) thin films were prepared by the polymeric precursors method and deposited by dip coating onto Pt/Ti/SiO2/Si(100) substrates. The dip-coated films were specular and crack-free and crystallized during firing at 700 degrees C. Microstructure and morphological evaluation were followed by grazing incident X-ray diffraction (GIXRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The films exhibited somewhat porous grain structure with rounded grains of about 100 nm. For the electrical measurements, gold electrodes of 300 mu m in diameter were sputter deposited on the top surface, forming a metal-ferroelectric-metal (MFM) configuration. The remanent polarization (P-r) and coercive field (E-c) were 5.6 mu C/cm(2) and 100 kV/cm, respectively. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
The electronic structure of Pb1-xLaxTiO3 (PLT) compounds for x ranging from 0 to 30 at. % of La is investigated by means of soft x-ray absorption near edge structure (XANES) at the Ti L-3,L-2 and O K edges. The greatest modification in the structure of the Ti 2p XANES spectra of the PLT compounds is observed in the region of the high energy peak of the L-3 edge (e(g) states), which exhibits a splitting in the undoped sample. As the amount of lanthanum increases, this splitting becomes less pronounced. This modification is interpreted as a decrease in the degree of disorder of titanium atoms, which is correlated to the substitution of Pb by La atoms. The structural changes observed at the low energy peaks of the O K-edge XANES spectra of the PLT compounds may be interpreted in terms of hybridization between O 2p, Ti 3d, and Pb 6p orbitals. A decrease in the degree of hybridization observed as Pb atoms are replaced by La atoms may be related to the differences in the ferroelectric properties observed between x=0.0 and x=0.30 compounds. (c) 2006 American Institute of Physics.
Resumo:
Indium-tin oxide nanostructures were deposited by excimer laser ablation in a nitrogen atmosphere using catalyst-free oxidized silicon substrates at 500 degrees C. Up to 1 mbar, nanowires grew by the vapor-liquid-solid (VLS) mechanism, with the amount of liquid material decreasing as the deposition pressure increased. The nanowires present the single-crystalline cubic bixbyite structure, oriented < 100 >. For the highest pressure used, pyramids were formed and no sign of liquid material could be observed, indicating that these structures grew by a vapor-solid mechanism. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Introduction Oral mucositis (OM) is a significant early complication of hematopoietic cell transplantation (HCT). This phase III randomized double-blind placebo-controlled study was designed to compare the ability of 2 different low level GaAlAs diode lasers (650 nm and 780 nm) to prevent oral mucositis in HCT patients conditioned with chemotherapy or chemoradiotherapy.Materials and methods Seventy patients were enrolled and randomized into 1 of 3 treatment groups: 650 nm laser, 780 nm laser or placebo. All active laser treatment patients received daily direct laser treatment to the lower labial mucosa, right and left buccal mucosa, lateral and ventral surfaces of the tongue, and floor of mouth with energy densities of 2 J/cm(2). Study treatment began on the first day of conditioning and continued through day +2 post HCT. Mucositis and oral pain was measured on days 0, 4, 7, 11, 14, 18, and 21 post HCT.Results the 650 nm wavelength reduced the severity of oral mucositis and pain scores. Low level laser therapy was well-tolerated and no adverse events were noted.Discussion While these results are encouraging, further study is needed to truly establish the efficacy of this mucositis prevention strategy. Future research needs to determine the effects of modification of laser parameters (e.g., wavelength, fluence, repetition rate of energy delivery, etc.) on the effectiveness of LLE laser to prevent OM.
Resumo:
Polycrystalline Co7Sb2O12 compounds have been synthesized by a chemical route, which is based on a modified polymeric precursor method. In order to study the physical properties of the samples, X-ray diffraction (XRD), thermal analyses (TG and DSC), infrared spectroscopy (IR), specific surface area (BET), and magnetization measurements were performed on these materials. Characterization through XRD revealed that the samples are single-phase after a heat-treatment at 1100degreesC for 2h, while the X-ray patterns of the samples heat-treated at lower temperatures revealed the presence of additional Bragg reflections belonging to the Co6Sb2O6 phase. These data were analyzed by means of Rietveld refinement and further analyze showed that Co7Sb2O12 displays an inverse spinel crystalline structure. In this structure, the Co2+ ions occupy the eight tetrahedral positions, and the sixteen octahedral positions are randomly occupied by the Sb5+ and Co2+ ions. IR studies disclosed two strong absorption bands, v(1) and v(2), in the expected spectral range for a spinel-type binary oxide with space group Fd3m. Exploratory studies concerning the magnetic properties indicated that this sample presents a spin-glass transition at T-f similar to 64 K. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
High-quality (Pb, La)TiO3 ferroelectric thin films were successfully prepared on a Pt(111)/Ti/SiO2/Si(100) substrate for the first time by spin coating, using the polymeric precursor method. The X-ray diffraction patterns show that the films are polycrystalline in nature. This method allows for low temperature (500 degrees C) synthesis, a high quality microstructure and superior dielectric properties. The effects on the microstructure and electrical properties were studied by changing the La content. The films annealed at 500 degreesC have a single perovskite phase with only a tetragonal or pseudocubic structure. As the La content is increased, the dielectric constant of PLT thin films increases from 570 up to 1138 at room temperature. The C-V and P-E characteristics of perovskite thin films prepared at a low temperature show normal ferroelectric behavior, representing the ferroelectric switching property. The remanent polarization and coercive field of the films deposited decreased due to the transformation from the ferroelectric to the paraelectric phase with an increased La content. (C) 2001 Kluwer Academic Publishers.