915 resultados para Logistic regression model
Resumo:
Au cours des 30 dernières années, l’embonpoint et l’obésité infantile sont devenus de véritables défis pour la santé publique. Bien que l’obésité soit, à la base, un problème physiologique (i.e. balance calorique positive) une série de facteurs psychosociaux sont reliés à son développement. Dans cette thèse, nous avons étudié le rôle des facteurs périnataux et de la petite enfance dans le développement du surpoids, ainsi que la relation entre le surpoids et les troubles internalisés au cours de l’enfance et au début de l’adolescence. Nous avions trois objectifs généraux: 1) Modéliser le développement de l’indice de masse corporelle (IMC) ou du statut pondéral (le fait d’être en surpoids ou non) durant l’enfance, ainsi qu’estimer l’hétérogénéité dans la population au cours du temps (i.e. identification de trajectoires développementales de l’IMC). 2) Identifier les facteurs périnataux et de la petite enfance pouvant accroitre le risque qu’un enfant suive une trajectoire menant au surpoids adolescente. 3) Tester la possibilité que le surpoids durant l’enfance soit associé avec des problèmes de santé mentale internalisés à l’adolescence, et vérifier la possibilité qu’une telle association soit médiatisée par l’expérience de victimisation par les pairs et l’insatisfaction corporelle. Ce travail est mené dans une perspective de développement au cours de la vie (life span perspective), considérant l’accumulation des facteurs de risques au cours du temps ainsi que les facteurs qui se manifestent durant certaines périodes critiques de développement.1,2 Nous avons utilisé les données provenant de l’Étude Longitudinale du Développement des Enfants du Québec (ELDEQ), une cohorte de naissances de la province de Québec, Canada. L’échantillon initial était composé de 2120 familles avec un bébé de 5 mois nés au Québec en 1997. Ces familles ont été suivies annuellement ou à tous les deux ans jusqu’à ce que les enfants atteignent l’âge de 13 ans. En ce qui concerne le premier objectif de recherche, nous avons utilisé la méthode des trajectoires développementales fondée sur des groupes pour modéliser l’IMC en continu et en catégories (surpoids vs poids normal). Pour notre deuxième objectif, nous avons effectué des modèles de régression multinomiale afin d’identifier les facteurs périnataux et de la petite enfance associés aux différents groupes développementaux du statut pondéral. Les facteurs de risques putatifs ont été choisis parmi les facteurs identifiés dans la littérature et représentent l’environnement périnatal, les caractéristiques de l’enfant, ainsi que l’environnement familial. Ces facteurs ont été analysés longitudinalement dans la mesure du possible, et les facteurs pouvant servir de levier potentiel d’intervention, tels que l’usage de tabac chez la mère durant la grossesse, le sommeil de l’enfant ou le temps d’écoute de télévision, ont été sélectionnés pour l’analyse. Pour notre troisième objectif, nous avons examiné les associations longitudinales (de 6 à 12 ans) entre les scores-z d’IMC (selon la référence CDC 2000) et les problèmes internalisés avec les modèles d’équations structurales de type « cross-lagged ». Nous avons ensuite examiné comment la victimisation par les pairs et l’insatisfaction corporelle durant l’enfance peuvent médiatiser un lien potentiel entre le surpoids et les troubles internalisés au début de l’adolescence. Les contributions scientifiques de la présente thèse incluent l’identification de trajectoires distinctes du statut pondérale durant l’enfance (précoce, tardive, jamais en surpoids), ainsi que les facteurs de risques précoces et les profils de santé mentale pouvant différer selon la trajectoire d’un enfant. De plus, nous avons identifié des mécanismes importants qui expliquent une partie de l’association entre les trajectoires de surpoids et les troubles internalisés: la victimisation par les pairs et l’insatisfaction corporelle.
Resumo:
La régression logistique est un modèle de régression linéaire généralisée (GLM) utilisé pour des variables à expliquer binaires. Le modèle cherche à estimer la probabilité de succès de cette variable par la linéarisation de variables explicatives. Lorsque l’objectif est d’estimer le plus précisément l’impact de différents incitatifs d’une campagne marketing (coefficients de la régression logistique), l’identification de la méthode d’estimation la plus précise est recherchée. Nous comparons, avec la méthode MCMC d’échantillonnage par tranche, différentes densités a priori spécifiées selon différents types de densités, paramètres de centralité et paramètres d’échelle. Ces comparaisons sont appliquées sur des échantillons de différentes tailles et générées par différentes probabilités de succès. L’estimateur du maximum de vraisemblance, la méthode de Gelman et celle de Genkin viennent compléter le comparatif. Nos résultats démontrent que trois méthodes d’estimations obtiennent des estimations qui sont globalement plus précises pour les coefficients de la régression logistique : la méthode MCMC d’échantillonnage par tranche avec une densité a priori normale centrée en 0 de variance 3,125, la méthode MCMC d’échantillonnage par tranche avec une densité Student à 3 degrés de liberté aussi centrée en 0 de variance 3,125 ainsi que la méthode de Gelman avec une densité Cauchy centrée en 0 de paramètre d’échelle 2,5.
Resumo:
This research was undertaken with the primary objective of explaining differences in consumption of personal care products using personality variables. Several streams of research reported were reviewed and a conceptual model was developed. Theories on the relationship between self concept and behaviour was reviewed and the need to use individual difference variables to conceptualize and measure the salient dimensions of the self were emphasized. Theories relating to social comparison, eating disorders, role of idealized media images in shaping the self-concept, evidence on cosmetic surgery and persuasibility were reviewed in the study. These came from diverse fields like social psychology, use of cosmetics, women studies, media studies, self-concept literature in psychology and consumer research, and marketing. From the review three basic dimensions, namely self-evaluation, self-awareness and persuasibility were identified and they were posited to be related to consumption. Several personality variables from these conceptual domains were identified and factor analysis confirmed the expected structure fitting the basic theoretical dimensions. Demographic variables like gender and income were also considered.It was found that self-awareness measured by the variable public self-consciousness explain differences in consumption of personal care products. The relationship between public self-consciousness and consumption was found to be most conspicuous in cases of poor self-, evaluation measured by self-esteem. Susceptibility to advertising also was found to explain differences in consumption.From the research, it may be concluded that personality variables are useful for explaining consumption and they must be used together to explain and understand the process. There may not be obvious and conspicuous links between individual measures and behaviour in marketing. However, when used in proper combination and with the help oftheoretical models personality offers considerable explanatory power as illustrated in the seventy five percent accuracy rate of prediction obtained in binary logistic regression.
Resumo:
Multivariate lifetime data arise in various forms including recurrent event data when individuals are followed to observe the sequence of occurrences of a certain type of event; correlated lifetime when an individual is followed for the occurrence of two or more types of events, or when distinct individuals have dependent event times. In most studies there are covariates such as treatments, group indicators, individual characteristics, or environmental conditions, whose relationship to lifetime is of interest. This leads to a consideration of regression models.The well known Cox proportional hazards model and its variations, using the marginal hazard functions employed for the analysis of multivariate survival data in literature are not sufficient to explain the complete dependence structure of pair of lifetimes on the covariate vector. Motivated by this, in Chapter 2, we introduced a bivariate proportional hazards model using vector hazard function of Johnson and Kotz (1975), in which the covariates under study have different effect on two components of the vector hazard function. The proposed model is useful in real life situations to study the dependence structure of pair of lifetimes on the covariate vector . The well known partial likelihood approach is used for the estimation of parameter vectors. We then introduced a bivariate proportional hazards model for gap times of recurrent events in Chapter 3. The model incorporates both marginal and joint dependence of the distribution of gap times on the covariate vector . In many fields of application, mean residual life function is considered superior concept than the hazard function. Motivated by this, in Chapter 4, we considered a new semi-parametric model, bivariate proportional mean residual life time model, to assess the relationship between mean residual life and covariates for gap time of recurrent events. The counting process approach is used for the inference procedures of the gap time of recurrent events. In many survival studies, the distribution of lifetime may depend on the distribution of censoring time. In Chapter 5, we introduced a proportional hazards model for duration times and developed inference procedures under dependent (informative) censoring. In Chapter 6, we introduced a bivariate proportional hazards model for competing risks data under right censoring. The asymptotic properties of the estimators of the parameters of different models developed in previous chapters, were studied. The proposed models were applied to various real life situations.
Resumo:
Introducción: con las recientes tendencias de estilo de vida, no está claro qué factores son los contribuyentes más importantes en niños escolares para desarrollar sobrepeso- obesidad. Objetivo. Evaluar el impacto de los factores prenatales, perinatales y ambientales sobre el desarrollo de sobrepeso y obesidad en niños de 5 a 10 años en una población bogotana. Materiales y métodos: se realizó un estudio de casos y controles no pareado, empleando una encuesta a 528 niños, en quienes se identificaron los factores de riesgo. Se utilizó la prueba chi-cuadrado para evaluar las diferencia entre los niños normales y con sobrepeso-obesidad. Se realizó un modelo de regresión logística para evaluar los factores relevantes. Se determinaron los (OR) y sus intervalos de confianza (IC) del 95%. Resultados: se obtuvo una muestra de 528 niños. Se encontró que existen diferencias significativas en la ingesta calórica (p<0,001). El sobrepeso materno pregestacional fue de 23,2% en las madres de los casos y 16,5% en los controles (p<0,001). No hubo diferencias estadísticamente significativas con otros factores. La regresión logística arrojó datos significativos en dieta hipercalórica p =0,002 (OR =5,27; IC 95% 1,79-1,54) y el peso materno p =0,005 (OR =1,03, IC 95% 1,01-1,05). Se realizó una curva ROC para el cálculo de la capacidad predictiva del modelo y el área bajo la curva es de 0.64 (IC 95% 0.59-0.69). Conclusiones: se identificó como factores de riesgo para el desarrollo de sobrepeso-obesidad infantil en niños escolares, una dieta hipercalórica y sobrepeso materno pregestacional.
Resumo:
El pronóstico de la Neumonía Adquirida en la Comunidad Severa (NAC-S) depende de decisiones terapéuticas instauradas tempranamente. Los cambios fisiológicos ocurridos en las primeras horas pueden ser difíciles de detectar. No existe ningún modelo para la determinación temprana del éxito de la terapia instaurada en NAC-S. Metodología: Descripción de la totalidad de los pacientes con NAC-S hospitalizados en la Unidad de Cuidado Intensivo de la Fundación Cardioinfantil entre los años 2008 y 2012 haciendo comparaciones entre grupos (muertos vs. supervivientes) y entre momentos (0, 24 y 48 horas desde el ingreso a la UCI) y realizando regresión logística binaria. Resultados: Entre los pacientes que fallecieron la necesidad de soporte vasoactivo fue mayor en todos los momentos evaluados (sig=0.001), en la línea de base tuvieron mayores requerimientos de la Fracción Inspirada de O2 (mediana 0.55% vs. 0.50%, sig=0.011), a las 24 horas tuvieron pH (mediana 7.345 vs.7.370, sig=0.025) y tensión arterial diastólica (mediana 58.5mmHg vs.61.0mmHg, sig =0.049) menores, y a las 48 horas glicemia (mediana 157mg/dL vs.142mg/dL, sig =0.026) creatinina (mediana 1.1mg/dL vs.0.7mg/dL, sig =0.062) y nitrógeno ureico (mediana 35mg/dL vs. 22mg/dL, sig =0.003) mayores comparados con los pacientes que sobrevivieron. Entre los pacientes supervivientes hubo una disminución de la frecuencia cardiaca entre las 0 y 24 horas (mediana 97lpm vs. 86lpm, sig =0.000) y entre las 0 y las 48 horas (mediana 97lpm vs. 81lpm, sig=0.000) y una disminución de los neutrófilos entre las 0 y las 48 horas (mediana 9838 vs. 8617, sig=0.062). Conclusiones: Nuestros hallazgos sugieren la existencia de una secuencia de fenómenos fisiopatológicos que al ser reconocida temprana y claramente permitiría establecer un plan de reanimación más especifico y eficaz. Estas diferencias se pueden plantear en el contexto de un modelo mixto predictivo
Resumo:
Introducción: La obstrucción intestinal es una patología de alta prevalencia e impacto en los servicios de cirugía general a nivel mundial. El manejo de esta entidad puede ser médico o quirúrgico. Cuando se requiere intervención quirúrgica, se busca evitar el desarrollo de isquemia intestinal y resecciones intestinales; durante el postoperatorio, pueden existir complicaciones. El objetivo de este estudio es identificar los factores asociados al desarrollo de complicaciones post operatorias en un grupo de pacientes con obstrucción intestinal mecánica llevados a manejo quirúrgico. Metodología: Estudio analítico tipo casos y controles en un grupo de pacientes con diagnóstico de obstrucción intestinal mecánica llevados a manejo quirúrgico de su patología. Los casos corresponden a los pacientes con complicaciones postoperatorias y los controles aquellos que no presentaron complicaciones. Se identificaron factores asociados a complicación post operatoria mediante modelos estadísticos bivariados y multivariados de regresión logística para factores como edad, sexo, antecedente quirúrgico, presentación clínica, paraclínica y diagnóstico postoperatorio de malignidad, entre otras. Resultados: Se identificaron un total de 138 pacientes (54 casos y 129 controles). Los rangos de edad entre 55-66 años y mayor de 66 años fueron asociados con complicaciones postoperatorias (OR 3,87 IC95% 1,58-9,50 y OR 3,62 IC95% 1,45-9,08 respectivamente). El déficit de base inferior a 5 mEq/litro se relaciona con complicaciones postoperatorias (OR 2,64 IC95% 1.33-5,25) Otras pruebas de laboratorio, características radiológicas, hallazgos de malignidad en el postoperatorio y la evolución de los pacientes no fueron asociados con complicaciones. Conclusiones: Las disminución de las complicaciones durante el manejo quirúrgico de obstrucción intestinal mecánica continúa siendo un reto para la cirugía general. Factores no modificables como edad avanzada y modificables como el equilibrio ácido base deben ser tenidos en cuenta dada su correlación en el desarrollo de complicaciones postoperatorias.
Resumo:
[EU]Lan honetan semantika distribuzionalaren eta ikasketa automatikoaren erabilera aztertzen dugu itzulpen automatiko estatistikoa hobetzeko. Bide horretan, erregresio logistikoan oinarritutako ikasketa automatikoko eredu bat proposatzen dugu hitz-segiden itzulpen- probabilitatea modu dinamikoan modelatzeko. Proposatutako eredua itzulpen automatiko estatistikoko ohiko itzulpen-probabilitateen orokortze bat dela frogatzen dugu, eta testuinguruko nahiz semantika distribuzionaleko informazioa barneratzeko baliatu ezaugarri lexiko, hitz-cluster eta hitzen errepresentazio bektorialen bidez. Horretaz gain, semantika distribuzionaleko ezagutza itzulpen automatiko estatistikoan txertatzeko beste hurbilpen bat lantzen dugu: hitzen errepresentazio bektorial elebidunak erabiltzea hitz-segiden itzulpenen antzekotasuna modelatzeko. Gure esperimentuek proposatutako ereduen baliagarritasuna erakusten dute, emaitza itxaropentsuak eskuratuz oinarrizko sistema sendo baten gainean. Era berean, gure lanak ekarpen garrantzitsuak egiten ditu errepresentazio bektorialen mapaketa elebidunei eta hitzen errepresentazio bektorialetan oinarritutako hitz-segiden antzekotasun neurriei dagokienean, itzulpen automatikoaz haratago balio propio bat dutenak semantika distribuzionalaren arloan.
Resumo:
To migrate successfully, birds need to store adequate fat reserves to fuel each leg of the journey. Migrants acquire their fuel reserves at stopover sites; this often entails exposure to predators. Therefore, the safety attributes of sites may be as important as the feeding opportunities. Furthermore, site choice might depend on fuel load, with lean birds more willing to accept danger to obtain good feeding. Here, we evaluate the factors underlying stopover-site usage by migrant Western Sandpipers (Calidris mauri) on a landscape scale. We measured the food and danger attributes of 17 potential stopover sites in the Strait of Georgia and Puget Sound region. We used logistic regression models to test whether food, safety, or both were best able to predict usage of these sites by Western Sandpipers. Eight of the 17 sites were used by sandpipers on migration. Generally, sites that were high in food and safety were used, whereas sites that were low in food and safety were not. However, dangerous sites were used if there was ample food abundance, and sites with low food abundance were used if they were safe. The model including both food and safety best-predicted site usage by sandpipers. Furthermore, lean sandpipers used the most dangerous sites, whereas heavier birds (which do not need to risk feeding in dangerous locations) used safer sites. This study demonstrates that both food and danger attributes are considered by migrant birds when selecting stopover sites, thus both these attributes should be considered to prioritize and manage stopover sites for conservation.
Resumo:
1. Jerdon's courser Rhinoptilus bitorquatus is a nocturnally active cursorial bird that is only known to occur in a small area of scrub jungle in Andhra Pradesh, India, and is listed as critically endangered by the IUCN. Information on its habitat requirements is needed urgently to underpin conservation measures. We quantified the habitat features that correlated with the use of different areas of scrub jungle by Jerdon's coursers, and developed a model to map potentially suitable habitat over large areas from satellite imagery and facilitate the design of surveys of Jerdon's courser distribution. 2. We used 11 arrays of 5-m long tracking strips consisting of smoothed fine soil to detect the footprints of Jerdon's coursers, and measured tracking rates (tracking events per strip night). We counted the number of bushes and trees, and described other attributes of vegetation and substrate in a 10-m square plot centred on each strip. We obtained reflectance data from Landsat 7 satellite imagery for the pixel within which each strip lay. 3. We used logistic regression models to describe the relationship between tracking rate by Jerdon's coursers and characteristics of the habitat around the strips, using ground-based survey data and satellite imagery. 4. Jerdon's coursers were most likely to occur where the density of large (>2 m tall) bushes was in the range 300-700 ha(-1) and where the density of smaller bushes was less than 1000 ha(-1). This habitat was detectable using satellite imagery. 5. Synthesis and applications. The occurrence of Jerdon's courser is strongly correlated with the density of bushes and trees, and is in turn affected by grazing with domestic livestock, woodcutting and mechanical clearance of bushes to create pasture, orchards and farmland. It is likely that there is an optimal level of grazing and woodcutting that would maintain or create suitable conditions for the species. Knowledge of the species' distribution is incomplete and there is considerable pressure from human use of apparently suitable habitats. Hence, distribution mapping is a high conservation priority. A two-step procedure is proposed, involving the use of ground surveys of bush density to calibrate satellite image-based mapping of potential habitat. These maps could then be used to select priority areas for Jerdon's courser surveys. The use of tracking strips to study habitat selection and distribution has potential in studies of other scarce and secretive species.
Resumo:
In this paper, Bayesian decision procedures are developed for dose-escalation studies based on bivariate observations of undesirable events and signs of therapeutic benefit. The methods generalize earlier approaches taking into account only the undesirable outcomes. Logistic regression models are used to model the two responses, which are both assumed to take a binary form. A prior distribution for the unknown model parameters is suggested and an optional safety constraint can be included. Gain functions to be maximized are formulated in terms of accurate estimation of the limits of a therapeutic window or optimal treatment of the next cohort of subjects, although the approach could be applied to achieve any of a wide variety of objectives. The designs introduced are illustrated through simulation and retrospective implementation to a completed dose-escalation study. Copyright © 2006 John Wiley & Sons, Ltd.
Resumo:
Recently, various approaches have been suggested for dose escalation studies based on observations of both undesirable events and evidence of therapeutic benefit. This article concerns a Bayesian approach to dose escalation that requires the user to make numerous design decisions relating to the number of doses to make available, the choice of the prior distribution, the imposition of safety constraints and stopping rules, and the criteria by which the design is to be optimized. Results are presented of a substantial simulation study conducted to investigate the influence of some of these factors on the safety and the accuracy of the procedure with a view toward providing general guidance for investigators conducting such studies. The Bayesian procedures evaluated use logistic regression to model the two responses, which are both assumed to be binary. The simulation study is based on features of a recently completed study of a compound with potential benefit to patients suffering from inflammatory diseases of the lung.
Resumo:
Survival times for the Acacia mangium plantation in the Segaliud Lokan Project, Sabah, East Malaysia were analysed based on 20 permanent sample plots (PSPs) established in 1988 as a spacing experiment. The PSPs were established following a complete randomized block design with five levels of spacing randomly assigned to units within four blocks at different sites. The survival times of trees in years are of interest. Since the inventories were only conducted annually, the actual survival time for each tree was not observed. Hence, the data set comprises censored survival times. Initial analysis of the survival of the Acacia mangium plantation suggested there is block by spacing interaction; a Weibull model gives a reasonable fit to the replicate survival times within each PSP; but a standard Weibull regression model is inappropriate because the shape parameter differs between PSPs. In this paper we investigate the form of the non-constant Weibull shape parameter. Parsimonious models for the Weibull survival times have been derived using maximum likelihood methods. The factor selection for the parameters is based on a backward elimination procedure. The models are compared using likelihood ratio statistics. The results suggest that both Weibull parameters depend on spacing and block.
Resumo:
1. Jerdon's courser Rhinoptilus bitorquatus is a nocturnally active cursorial bird that is only known to occur in a small area of scrub jungle in Andhra Pradesh, India, and is listed as critically endangered by the IUCN. Information on its habitat requirements is needed urgently to underpin conservation measures. We quantified the habitat features that correlated with the use of different areas of scrub jungle by Jerdon's coursers, and developed a model to map potentially suitable habitat over large areas from satellite imagery and facilitate the design of surveys of Jerdon's courser distribution. 2. We used 11 arrays of 5-m long tracking strips consisting of smoothed fine soil to detect the footprints of Jerdon's coursers, and measured tracking rates (tracking events per strip night). We counted the number of bushes and trees, and described other attributes of vegetation and substrate in a 10-m square plot centred on each strip. We obtained reflectance data from Landsat 7 satellite imagery for the pixel within which each strip lay. 3. We used logistic regression models to describe the relationship between tracking rate by Jerdon's coursers and characteristics of the habitat around the strips, using ground-based survey data and satellite imagery. 4. Jerdon's coursers were most likely to occur where the density of large (>2 m tall) bushes was in the range 300-700 ha(-1) and where the density of smaller bushes was less than 1000 ha(-1). This habitat was detectable using satellite imagery. 5. Synthesis and applications. The occurrence of Jerdon's courser is strongly correlated with the density of bushes and trees, and is in turn affected by grazing with domestic livestock, woodcutting and mechanical clearance of bushes to create pasture, orchards and farmland. It is likely that there is an optimal level of grazing and woodcutting that would maintain or create suitable conditions for the species. Knowledge of the species' distribution is incomplete and there is considerable pressure from human use of apparently suitable habitats. Hence, distribution mapping is a high conservation priority. A two-step procedure is proposed, involving the use of ground surveys of bush density to calibrate satellite image-based mapping of potential habitat. These maps could then be used to select priority areas for Jerdon's courser surveys. The use of tracking strips to study habitat selection and distribution has potential in studies of other scarce and secretive species.
Resumo:
This paper derives some exact power properties of tests for spatial autocorrelation in the context of a linear regression model. In particular, we characterize the circumstances in which the power vanishes as the autocorrelation increases, thus extending the work of Krämer (2005). More generally, the analysis in the paper sheds new light on how the power of tests for spatial autocorrelation is affected by the matrix of regressors and by the spatial structure. We mainly focus on the problem of residual spatial autocorrelation, in which case it is appropriate to restrict attention to the class of invariant tests, but we also consider the case when the autocorrelation is due to the presence of a spatially lagged dependent variable among the regressors. A numerical study aimed at assessing the practical relevance of the theoretical results is included