919 resultados para Lightest supersymmetric particles
Resumo:
Exact results on particle densities as well as correlators in two models of immobile particles, containing either a single species or else two distinct species, are derived. The models evolve following a descent dynamics through pair annihilation where each particle interacts once at most throughout its entire history. The resulting large number of stationary states leads to a non-vanishing configurational entropy. Our results are established for arbitrary initial conditions and are derived via a generating function method. The single-species model is the dual of the 1D zero-temperature kinetic Ising model with Kimball-Deker-Haake dynamics. In this way, both in finite and semi-infinite chains and also the Bethe lattice can be analysed. The relationship with the random sequential adsorption of dimers and weakly tapped granular materials is discussed.
Resumo:
The present study aimed determines lead (Pb), antimony (Sb) and barium (Ba) as the major elements present in GSR in the environmental air of the Ballistics Laboratory of the Sao Paulo Criminalistics Institute (I.C.-S.P.), Sao Paulo, SP, Brazil. Micro environmental monitors (mini samplers) were located at selected places. The PM2.5 fraction of this airborne was collected in, previously weighted filters, and analyzed by sector field inductively coupled plasma mass spectrometer (SF-HR-ICP-MS). The higher values of the airborne lead, antimony and barium, were found at the firing range (lead (Pb): 58.9 mu g/m(3); barium (Ba): 6.9 mu g/m(3); antimony (Sb): 7.3 mu g/m(3)). The mean value of the airborne in this room during 6 monitored days was Pb: 23.1 mu g/m(3); Ba: 2.2 mu g/m(3); Sb: 1.5 mu g/m(3). In the water tank room, the air did not show levels above the limits of concern. In general the airborne lead changed from day to day, but the barium and antimony remained constant. Despite of that, the obtained values suggest that the workers may be exposed to airborne lead concentration that can result in an unhealthy environment and could increase the risk of chronic intoxication. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
We extend our earlier results delineating the supersymmetry reach of the CERN Large Hadron Collider operating at a center-of-mass energy root s = 7 TeV to integrated luminosities in the range 5-30 fb(-1). Our results are presented within the paradigm minimal supergravity model or constrained minimal supersymmetric standard model. Using a six-dimensional grid of cuts for the optimization of signal to background ratio-including missing E-T-we find for m((g) over tilde) similar to m((q) over tilde) an LHC 5 sigma supersymmetry discovery reach of m((g) over tilde) similar to 1:3, 1.4, 1.5, and 1.6 TeV for 5, 10, 20, and 30 fb(-1), respectively. For m((q) over tilde) >> m((g) over tilde), the corresponding reach is instead m((g) over tilde) similar to 0: 8, 0.9, 1.0, and 1.05 TeV, for the same integrated luminosities.
Resumo:
The ability to entrap drugs within vehicles and subsequently release them has led to new treatments for a number of diseases. Based on an associative phase separation and interfacial diffusion approach, we developed a way to prepare DNA gel particles without adding any kind of cross-linker or organic solvent. Among the various agents studied, cationic surfactants offered particularly efficient control for encapsulation and DNA release from these DNA gel particles. The driving force for this strong association is the electrostatic interaction between the two components, as induced by the entropic increase due to the release of the respective counter-ions. However, little is known about the influence of the respective counter-ions on this surfactant-DNA interaction. Here we examined the effect of different counter-ions on the formation and properties of the DNA gel particles by mixing DNA (either single-(ssDNA) or double-stranded (dsDNA)) with the single chain surfactant dodecyltrimethylammonium (DTA). In particular, we used as counter-ions of this surfactant the hydrogen sulfate and trifluoromethane sulfonate anions and the two halides, chloride and bromide. Effects on the morphology of the particles obtained, the encapsulation of DNA and its release, as well as the haemocompatibility of these particles are presented, using counter-ion structure and DNA conformation as controlling parameters. Analysis of the data indicates that the degree of counter-ion dissociation from the surfactant micelles and the polar/hydrophobic character of the counter-ion are important parameters in the final properties of the particles. The stronger interaction with amphiphiles for ssDNA than for dsDNA suggests the important role of hydrophobic interactions in DNA.
Resumo:
We analyse the interplay between the Higgs to diphoton rate and electroweak precision measurements constraints in extensions of the Standard Model with new uncolored charged fermions that do not mix with the ordinary ones. We also compute the pair production cross sections for the lightest fermion and compare them with current bounds.
Resumo:
Measurements of the sphericity of primary charged particles in minimum bias proton-proton collisions at root s = 0.9, 2.76 and 7 TeV with the ALICE detector at the LHC are presented. The observable is measured in the plane perpendicular to the beam direction using primary charged tracks with p(T) > 0.5 GeV/c in vertical bar eta vertical bar < 0.8. The mean sphericity as a function of the charged particle multiplicity at mid-rapidity (N-ch) is reported for events with different p(T) scales ("soft" and "hard") defined by the transverse momentum of the leading particle. In addition, the mean charged particle transverse momentum versus multiplicity is presented for the different event classes, and the sphericity distributions in bins of multiplicity are presented. The data are compared with calculations of standard Monte Carlo event generators. The transverse sphericity is found to grow with multiplicity at all collision energies, with a steeper rise at low N-ch, whereas the event generators show an opposite tendency. The combined study of the sphericity and the mean p(T) with multiplicity indicates that most of the tested event generators produce events with higher multiplicity by generating more back-to-back jets resulting in decreased sphericity (and isotropy). The PYTHIA6 generator with tune PERUGIA-2011 exhibits a noticeable improvement in describing the data, compared to the other tested generators.
Resumo:
The escape dynamics of a classical light ray inside a corrugated waveguide is characterised by the use of scaling arguments. The model is described via a two-dimensional nonlinear and area preserving mapping. The phase space of the mapping contains a set of periodic islands surrounded by a large chaotic sea that is confined by a set of invariant tori. When a hole is introduced in the chaotic sea, letting the ray escape, the histogram of frequency of the number of escaping particles exhibits rapid growth, reaching a maximum value at n(p) and later decaying asymptotically to zero. The behaviour of the histogram of escape frequency is characterised using scaling arguments. The scaling formalism is widely applicable to critical phenomena and useful in characterisation of phase transitions, including transitions from limited to unlimited energy growth in two-dimensional time varying billiard problems. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We include the dynamics of the angular straggling process in the angular distributions of Mott scattering of heavy ions. We model the passage of an incoming nucleus through a target as a diffusion process. It is then possible to derive a simple and physically transparent expression for the angular dispersion due to the straggling. The angular dispersion should be folded with the theoretical Mott cross section to see its effect on the amplitude of the Mott oscillations. Our results agree very well with data of Pb-208 + Pb-208 scattering. We define the "classical" limit as the limit when the angular dispersion due to straggling becomes comparable with the Mott oscillation period and get the disappearance of quantum interference occurring at the limit 0.050 root xi Z(4)/E-3/2 >= 1, where xi stands for the target thickness, Z is the system's charge, and E is the center-of-mass energy. The experiments on lead are very close to this limit. We show that the kinematical correlations due to the identity of the particles is maintained, as it should be, and the action of the environment is to reduce the fringe visibility.
Resumo:
STAR's measurements of directed flow (v(1)) around midrapidity for pi(+/-), K-+/-, K-S(0), p, and (p) over bar in Au + Au collisions at root s(NN) = 200 GeV are presented. A negative v(1) (y) slope is observed for most of produced particles (pi(+/-), K-+/-, K-S(0), p, and (p) over bar). In 5%-30% central collisions, a sizable difference is present between the v(1)(y) slope of protons and antiprotons, with the former being consistent with zero within errors. The v(1) excitation function is presented. Comparisons to model calculations (RQMD, UrQMD, AMPT, QGSM with parton recombination, and a hydrodynamics model with a tilted source) are made. For those models which have calculations of v(1) for both pions and protons, none of them can describe v(1()y) forpions and protons simultaneously. The hydrodynamics model with a tilted source as currently implemented cannot explain the centrality dependence of the difference between the v(1)(y) slopes of protons and antiprotons.
Resumo:
The exact expressions for the characteristics of synchrotron radiation of charged particles in the first excited state are obtained in analytical form using quantum theory methods. We performed a detailed analysis of the angular distribution structure of radiation power and its polarization for particles with spin 0 and 1/2. It is shown that the exact quantum calculations lead to results that differ substantially from the predictions of classical theory.
Resumo:
We consider an alternative explanation for the deficit of nu(e) in Ga solar neutrino calibration experiments and of the (nu) over bar (e) in short-baseline reactor experiments by a model where neutrinos can oscillate into sterile Kaluza-Klein modes that can propagate in compactified submicrometer flat extra dimensions. We have analyzed the results of the gallium radioactive source experiments and 19 reactor experiments with baseline shorter than 100 m, and showed that these data can be fit into this scenario. The values of the lightest neutrino mass and of the size of the largest extra dimension that are compatible with these experiments are mostly not excluded by other neutrino oscillation experiments.
Resumo:
Understanding how magnetic materials respond to rapidly varying magnetic fields, as in dynamic hysteresis loops, constitutes a complex and physically interesting problem. But in order to accomplish a thorough investigation, one must necessarily consider the effects of thermal fluctuations. Albeit being present in all real systems, these are seldom included in numerical studies. The notable exceptions are the Ising systems, which have been extensively studied in the past, but describe only one of the many mechanisms of magnetization reversal known to occur. In this paper we employ the Stochastic Landau-Lifshitz formalism to study high-frequency hysteresis loops of single-domain particles with uniaxial anisotropy at an arbitrary temperature. We show that in certain conditions the magnetic response may become predominantly out-of-phase and the loops may undergo a dynamic symmetry loss. This is found to be a direct consequence of the competing responses due to the thermal fluctuations and the gyroscopic motion of the magnetization. We have also found the magnetic behavior to be exceedingly sensitive to temperature variations, not only within the superparamagnetic-ferromagnetic transition range usually considered, but specially at even lower temperatures, where the bulk of interesting phenomena is seen to take place. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In Kantor and Trishin (1997) [3], Kantor and Trishin described the algebra of polynomial invariants of the adjoint representation of the Lie superalgebra gl(m vertical bar n) and a related algebra A, of what they called pseudosymmetric polynomials over an algebraically closed field K of characteristic zero. The algebra A(s) was investigated earlier by Stembridge (1985) who in [9] called the elements of A(s) supersymmetric polynomials and determined generators of A(s). The case of positive characteristic p of the ground field K has been recently investigated by La Scala and Zubkov (in press) in [6]. We extend their work and give a complete description of generators of polynomial invariants of the adjoint action of the general linear supergroup GL(m vertical bar n) and generators of A(s).
Resumo:
We present results for longitudinal dynamic hysteresis in single domain particles with uniaxial anisotropy. The combined influence of temperature, field-sweeping frequency, and field amplitude is discussed in detail. A novel and efficient numerical method is proposed, based on the direct solution of the infinite hierarchy of differential recurrence relations obtained from averaging over the stochastic realizations of the magnetic Langevin equation. (C) 2012 American Institute of Physics. [doi:10.1063/1.3676416]
Resumo:
The Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA) is a long term (20 years) research effort aimed at the understanding of the functioning of the Amazonian ecosystem. In particular, the strong biosphere-atmosphere interaction is a key component looking at the exchange processes between vegetation and the atmosphere, focusing on aerosol particles. Two aerosol components are the most visible: The natural biogenic emissions of aerosols and VOCs, and the biomass burning emissions. A large effort was done to characterize natural biogenic aerosols that showed detailed organic characterization and optical properties. The biomass burning component in Amazonia is important in term of aerosol and trace gases emissions, with deforestation rates decreasing, from 27,000 Km2 in 2004 to about 5,000 Km2 in 2011. Biomass burning emissions in Amazonia increases concentrations of aerosol particles, CO, ozone and other species, and also change the surface radiation balance in a significant way. Long term monitoring of aerosols and trace gases were performed in two sites: a background site in Central Amazonia, 55 Km North of Manaus (called ZF2 ecological reservation) and a monitoring station in Porto Velho, Rondonia state, a site heavily impacted by biomass burning smoke. Several instruments were operated to measured aerosol size distribution, optical properties (absorption and scattering at several wavelengths), composition of organic (OC/EC) and inorganic components among other measurements. AERONET and MODIS measurements from 5 long term sites show a large year-to year variability due to climatic and socio-economic issues. Aerosol optical depths of more than 4 at 550nm was observed frequently over biomass burning areas. In the pristine Amazonian atmosphere, aerosol scattering coefficients ranged between 1 and 200 Mm-1 at 450 nm, while absorption ranged between 1 and 20 Mm-1 at 637 nm. A strong seasonal behavior was observed, with greater aerosol loadings during the dry season (Jul-Nov) as compared to the wet season (Dec-Jun). During the wet season in Manaus, aerosol scattering (450 nm) and absorption (637 nm) coefficients averaged, respectively, 14 and 0.9 Mm-1. Angstrom exponents for scattering were lower during the wet season (1.6) in comparison to the dry season (1.9), which is consistent with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic aerosols, predominant in the coarse mode. Single scattering albedo, calculated at 637 nm, did not show a significant seasonal variation, averaging 0.86. In Porto Velho, even in the wet season it was possible to observe an impact from anthropogenic aerosol. Black Carbon was measured at a high 20 ug/m³ in the dry season, showing strong aerosol absorption. This work presents a general description of the aerosol optical properties in Amazonia, both during the Amazonian wet and dry seasons.