954 resultados para Layered perovskites,Photo-Induced Current Transient Spectroscopy,PICTS,deep states,2D perovskites


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Southern Ocean circulation consists of a complicated mixture of processes and phenomena that arise at different time and spatial scales which need to be parametrized in the state-of-the-art climate models. The temporal and spatial scales that give rise to the present-day residual mean circulation are here investigated by calculating the Meridional Overturning Circulation (MOC) in density coordinates from an eddy-permitting global model. The region sensitive to the temporal decomposition is located between 38°S and 63°S, associated with the eddy-induced transport. The ‘‘Bolus’’ component of the residual circulation corresponds to the eddy-induced transport. It is dominated by timescales between 1 month and 1 year. The temporal behavior of the transient eddies is examined in splitting the ‘‘Bolus’’ component into a ‘‘Seasonal’’, an ‘‘Eddy’’ and an ‘‘Inter-monthly’’ component, respectively representing the correlation between density and velocity fluctuations due to the average seasonal cycle, due to mesoscale eddies and due to large-scale motion on timescales longer than one month that is not due to the seasonal cycle. The ‘‘Seasonal’’ bolus cell is important at all latitudes near the surface. The ‘‘Eddy’’ bolus cell is dominant in the thermocline between 50°S and 35°S and over the whole ocean depth at the latitude of the Drake Passage. The ‘‘Inter-monthly’’ bolus cell is important in all density classes and is maximal in the Brazil–Malvinas Confluence and the Agulhas Return Current. The spatial decomposition indicates that a large part of the Eulerian mean circulation is recovered for spatial scales larger than 11.25°, implying that small-scale meanders in the Antarctic Circumpolar Current (ACC), near the Subantarctic and Polar Fronts, and near the Subtropical Front are important in the compensation of the Eulerian mean flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

G protein-coupled receptors of nociceptive neurons can sensitize transient receptor potential (TRP) ion channels, which amplify neurogenic inflammation and pain. Protease-activated receptor 2 (PAR(2)), a receptor for inflammatory proteases, is a major mediator of neurogenic inflammation and pain. We investigated the signaling mechanisms by which PAR(2) regulates TRPV4 and determined the importance of tyrosine phosphorylation in this process. Human TRPV4 was expressed in HEK293 cells under control of a tetracycline-inducible promoter, allowing controlled and graded channel expression. In cells lacking TRPV4, the PAR(2) agonist stimulated a transient increase in [Ca(2+)](i). TRPV4 expression led to a markedly sustained increase in [Ca(2+)](i). Removal of extracellular Ca(2+) and treatment with the TRPV4 antagonists Ruthenium Red or HC067047 prevented the sustained response. Inhibitors of phospholipase A(2) and cytochrome P450 epoxygenase attenuated the sustained response, suggesting that PAR(2) generates arachidonic acid-derived lipid mediators, such as 5',6'-EET, that activate TRPV4. Src inhibitor 1 suppressed PAR(2)-induced activation of TRPV4, indicating the importance of tyrosine phosphorylation. The TRPV4 tyrosine mutants Y110F, Y805F, and Y110F/Y805F were expressed normally at the cell surface. However, PAR(2) was unable to activate TRPV4 with the Y110F mutation. TRPV4 antagonism suppressed PAR(2) signaling to primary nociceptive neurons, and TRPV4 deletion attenuated PAR(2)-stimulated neurogenic inflammation. Thus, PAR(2) activation generates a signal that induces sustained activation of TRPV4, which requires a key tyrosine residue (TRPV4-Tyr-110). This mechanism partly mediates the proinflammatory actions of PAR(2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms of pancreatic pain, a cardinal symptom of pancreatitis, are unknown. Proinflammatory agents that activate transient receptor potential (TRP) channels in nociceptive neurons can cause neurogenic inflammation and pain. We report a major role for TRPV4, which detects osmotic pressure and arachidonic acid metabolites, and TRPA1, which responds to 4-hydroxynonenal and cyclopentenone prostaglandins, in pancreatic inflammation and pain in mice. Immunoreactive TRPV4 and TRPA1 were detected in pancreatic nerve fibers and in dorsal root ganglia neurons innervating the pancreas, which were identified by retrograde tracing. Agonists of TRPV4 and TRPA1 increased intracellular Ca(2+) concentration ([Ca(2+)](i)) in these neurons in culture, and neurons also responded to the TRPV1 agonist capsaicin and are thus nociceptors. Intraductal injection of TRPV4 and TRPA1 agonists increased c-Fos expression in spinal neurons, indicative of nociceptor activation, and intraductal TRPA1 agonists also caused pancreatic inflammation. The effects of TRPV4 and TRPA1 agonists on [Ca(2+)](i), pain and inflammation were markedly diminished or abolished in trpv4 and trpa1 knockout mice. The secretagogue cerulein induced pancreatitis, c-Fos expression in spinal neurons, and pain behavior in wild-type mice. Deletion of trpv4 or trpa1 suppressed c-Fos expression and pain behavior, and deletion of trpa1 attenuated pancreatitis. Thus TRPV4 and TRPA1 contribute to pancreatic pain, and TRPA1 also mediates pancreatic inflammation. Our results provide new information about the contributions of TRPV4 and TRPA1 to inflammatory pain and suggest that channel antagonists are an effective therapy for pancreatitis, when multiple proinflammatory agents are generated that can activate and sensitize these channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cigarette smoke (CS) inhalation causes an early inflammatory response in rodent airways by stimulating capsaicin-sensitive sensory neurons that express transient receptor potential cation channel, subfamily V, member 1 (TRPV1) through an unknown mechanism that does not involve TRPV1. We hypothesized that 2 alpha,beta-unsaturated aldehydes present in CS, crotonaldehyde and acrolein, induce neurogenic inflammation by stimulating TRPA1, an excitatory ion channel coexpressed with TRPV1 on capsaicin-sensitive nociceptors. We found that CS aqueous extract (CSE), crotonaldehyde, and acrolein mobilized Ca2+ in cultured guinea pig jugular ganglia neurons and promoted contraction of isolated guinea pig bronchi. These responses were abolished by a TRPA1-selective antagonist and by the aldehyde scavenger glutathione but not by the TRPV1 antagonist capsazepine or by ROS scavengers. Treatment with CSE or aldehydes increased Ca2+ influx in TRPA1-transfected cells, but not in control HEK293 cells, and promoted neuropeptide release from isolated guinea pig airway tissue. Furthermore, the effect of CSE and aldehydes on Ca2+ influx in dorsal root ganglion neurons was abolished in TRPA1-deficient mice. These data identify alpha,beta-unsaturated aldehydes as the main causative agents in CS that via TRPA1 stimulation mediate airway neurogenic inflammation and suggest a role for TRPA1 in the pathogenesis of CS-induced diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agonists of protease-activated receptor 2 (PAR(2)) evoke hyperexcitability of dorsal root ganglia (DRG) neurons by unknown mechanisms. We examined the cellular mechanisms underlying PAR(2)-evoked hyperexcitability of mouse colonic DRG neurons to determine their potential role in pain syndromes such as visceral hyperalgesia. Colonic DRG neurons were identified by injecting Fast Blue and DiI retrograde tracers into the mouse colon. Using immunofluorescence, we found that DiI-labelled neurons contained PAR(2) immunoreactivity, confirming the presence of receptors on colonic neurons. Whole-cell current-clamp recordings of acutely dissociated neurons demonstrated that PAR(2) activation with a brief application (3 min) of PAR(2) agonists, SLIGRL-NH(2) and trypsin, evoked sustained depolarizations (up to 60 min) which were associated with increased input resistance and a marked reduction in rheobase (50% at 30 min). In voltage clamp, SLIGRL-NH(2) markedly suppressed delayed rectifier I(K) currents (55% at 10 min), but had no effect on the transient I(A) current or TTX-resistant Na(+) currents. In whole-cell current-clamp recordings, the sustained excitability evoked by PAR(2) activation was blocked by the PKC inhibitor, calphostin, and the ERK(1/2) inhibitor PD98059. Studies of ERK(1/2) phosphorylation using confocal microscopy demonstrated that SLIGRL-NH(2) increased levels of immunoreactive pERK(1/2) in DRG neurons, particularly in proximity to the plasma membrane. Thus, activation of PAR(2) receptors on colonic nociceptive neurons causes sustained hyperexcitability that is related, at least in part, to suppression of delayed rectifier I(K) currents. Both PKC and ERK(1/2) mediate the PAR(2)-induced hyperexcitability. These studies describe a novel mechanism of sensitization of colonic nociceptive neurons that may be implicated in conditions of visceral hyperalgesia such as irritable bowel syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retrieving a subset of items can cause the forgetting of other items, a phenomenon referred to as retrieval-induced forgetting. According to some theorists, retrieval-induced forgetting is the consequence of an inhibitory mechanism that acts to reduce the accessibility of non-target items that interfere with the retrieval of target items. Other theorists argue that inhibition is unnecessary to account for retrieval-induced forgetting, contending instead that the phenomenon can be best explained by non-inhibitory mechanisms, such as strength-based competition or blocking. The current paper provides the first major meta-analysis of retrieval-induced forgetting, conducted with the primary purpose of quantitatively evaluating the multitude of findings that have been used to contrast these two theoretical viewpoints. The results largely supported inhibition accounts, but also provided some challenging evidence, with the nature of the results often varying as a function of how retrieval-induced forgetting was assessed. Implications for further research and theory development are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heme oxygenase-1 (HO-1), an inducible enzyme up-regulated in Alzheimer‟s disease (AD), catabolises heme to biliverdin, Fe2+ and carbon monoxide (CO). CO can protect neurones from oxidative stress-induced apoptosis by inhibiting Kv2.1 channels, which mediate cellular K+ efflux as an early step in the apoptotic cascade. Since apoptosis contributes to the neuronal loss associated with amyloid β peptide (Aβ) toxicity in AD, we investigated the protective effects of HO-1 and CO against Aβ1-42 toxicity in SH-SY5Y cells, employing cells stably transfected with empty vector or expressing the cellular prion protein, PrPc, and rat primary hippocampal neurons. Aβ1-42 (containing protofibrils) caused a concentrationdependent decrease in cell viability, attributable at least in part to induction of apoptosis, with the PrPc expressing cells showing greater susceptibility to Aβ1-42 toxicity. Pharmacological induction or genetic over-expression of HO-1 significantly ameliorated the effects of Aβ1-42. The CO-donor CORM-2 protected cells against Aβ1-42 toxicity in a concentration-dependent manner. Electrophysiological studies revealed no differences in the outward current pre- and post-Aβ1-42 treatment suggesting that K+ channel activity is unaffected in these cells. Instead, Aβ toxicity was reduced by the L-type Ca2+ channel blocker nifedipine, and by the CaMKKII inhibitor, STO-609. Aβ also activated the downstream kinase, AMP-dependent protein kinase (AMPK). CO prevented this activation of AMPK. Our findings indicate that HO-1 protects against Aβ toxicity via production of CO. Protection does not arise from inhibition of apoptosis-associated K+ efflux, but rather by inhibition of AMPK activation, which has been recently implicated in the toxic effects of Aβ. These data provide a novel, beneficial effect of CO which adds to its growing potential as a therapeutic agent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Naturally enhanced incoherent scatter spectra from the vicinity of the dayside cusp/cleft, interpreted as being due to plasma turbulence driven by short bursts of intense field-aligned current, are compared with high-resolution narrow-angle auroral images and meridian scanning photometer data. Enhanced spectra have been observed on many occasions in association with nightside aurora, but there has been only one report of such spectra seen in the cusp/cleft region. Narrow-angle images show considerable change in the aurora on timescales shorter than the 10-s radar integration period, which could explain spectra observed with both ion lines simultaneously enhanced. Enhanced radar spectra are generally seen inside or beside regions of 630-nm auroral emission, indicative of sharp F region conductivity gradients, but there appears also to be a correlation with dynamic, small-scale auroral forms of order 100 m and less in width.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionospheric plasma flow measurements and simultaneous observations of thin (∼0.2° invariant latitude (ILAT)), multiple, longitudinally extended auroral arcs of transient nature within 74°-76° ILAT and 1030-1130 UT (∼14-15 MLT) on January 12, 1989, are reported. The auroral structures appeared within the luminous belt of strong 630.0-nm emissions located predominantly on sunward convecting field lines equatorward of the convection reversal boundary as identified by the European Incoherent Scatter UHF radar. The events occurred during a period of several hours quasi-steady solar wind speed (∼ 700 km s−1) and a radially orientated interplanetary magnetic field (IMF) with a weak northward tilt (IMF Bz>0). These typical dayside auroral features are related to previous studies of auroral activity related to the upward region 1 current in the postnoon sector. The discrete auroral events presented here may result from magnetosheath plasma injections into the low-latitude boundary layer (LLBL) and an associated dynamo mechanism. An alternative explanation invokes kinetic Alfvén waves, triggered either by Kelvin-Helmholtz instability at the inner (or outer) edge of the LLBL or by pressure pulse induced magnetopause surface waves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The altitude from which transient 630-nm (“red line”) light is emitted in transient dayside auroral breakup events is discussed. Theoretically, the emissions should normally originate from approximately 250 to 550 km. Because the luminosity in dayside breakup events moves in a way that is consistent with newly opened field lines, they have been interpreted as the ionospheric signatures of transient reconnection at the dayside magnetopause. For this model the importance of these events for convection can be assessed from the rate of change of their area. The area derived from analysis of images from an all-sky camera and meridian scans from a photometer, however, depends on the square of the assumed emission altitude. From field line mapping, it is shown for both a westward and an eastward moving event, that the main 557.7-nm emission comes from the edge of the 630 nm transient, where a flux transfer event model would place the upward field-aligned current (on the poleward and equatorward edge, respectively). The observing geometry for the two cases presented is such that this is true, irrespective of the 630-nm emission altitude. From comparisons with the European incoherent scatter radar data for the westward (interplanetary magnetic field By > 0) event on January 12, 1988, the 630-nm emission appears to emanate from an altitude of 250 km, and to be accompanied by some 557.7-nm “green-line” emission. However, for a large, eastward moving event observed on January 9, 1989, there is evidence that the emission altitude is considerably greater and, in this case, the only 557.7-nm emission is that on the equatorward edge of the event, consistent with a higher altitude 630-nm excitation source. Assuming an emission altitude of 250 km for this event yields a reconnection voltage of >50 kV during the reconnection burst but a contribution to the convection voltage of >15 kV. However, from the motion of the event we infer that the luminosity peaks at an altitude in the range of 400 and 500 km, and for the top of this range the reconnection and average convection voltages would be increased to >200 kV and >60 kV, respectively. (These are all minimum estimates because the event extends in longitude beyond the field-of-view of the camera). Hence the higher-emission altitude has a highly significant implication, namely that the reconnection bursts which cause the dayside breakup events could explain most of the voltage placed across the magnetosphere and polar cap by the solar wind flow. Analysis of the plasma density and temperatures during the event on January 9, 1989, predicts the required thermal excitation of significant 630-nm intensities at altitudes of 400-500 km.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of flux transfer events (FTE) on the dayside auroral ionosphere are studied, using a simple twin-vortex model of induced ionospheric plasma flow. It is shown that the predicted and observed velocities of these flows are sufficient to drive nonthermal plasma in the F region, not only within the newly opened flux tube of the FTE, but also on the closed, or "old" open, field lines around it. In fact, with the expected poleward neutral wind, the plasma is more highly nonthermal on the flanks of, but outside, the open flux tube: EISCAT observations indicate that plasma is indeed driven into nonthermal distributions in these regions. The nonthermal plasma is thereby subject to additional upforce due to the resulting ion temperature anisotropy and transient expansion due to Joule heating and also to ion accelerations associated with the FTE field aligned current system. Any upflows produced on closed field lines in the vicinity of the FTE are effectively bunched-up in the "wake" of the FTE. Observations from the AMPTE-UKS satellite at the magnetopause reveal ion upflows of energy ∼100 eV flowing out from the ionosphere on closed field lines which are only found in the wake of the FTE. Such flows are also only found shortly after two, out of all the FTEs observed by AMPTE-UKS. The outflow from the ionosphere is two orders of magnitude greater than predicted for the "classical" polar wind. It is shown that such ionospheric ion flows are only expected in association with FTEs on the magnetopause which are well removed from the sub-solar point-either towards dusk or, as in the UKS example discussed here, towards dawn. It is suggested that such ionospheric ions will only be observed if the center of the FTE open flux tube passes very close to the satellite. Consequently, we conclude the ion upflows presented here are probably driven by the second of two possible source FTEs and are observed at the satellite with a lag after the FTE which is less than their time-of-flight.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blending with a hydrogen-bonding supramolecular polymer is shown to be a successful novel strategy to induce microphase-separation in the melt of a Pluronic polyether block copolymer. The supramolecular polymer is a polybutadiene derivative with urea–urethane end caps. Microphase separation is analysed using small-angle X-ray scattering and its influence on the macroscopic rheological properties is analysed. FTIR spectroscopy provides a detailed picture of the inter-molecular interactions between the polymer chains that induces conformational changes leading to microphase separation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Georeferencing is one of the major tasks of satellite-borne remote sensing. Compared to traditional indirect methods, direct georeferencing through a Global Positioning System/inertial navigation system requires fewer and simpler steps to obtain exterior orientation parameters of remotely sensed images. However, the pixel shift caused by geographic positioning error, which is generally derived from boresight angle as well as terrain topography variation, can have a great impact on the precision of georeferencing. The distribution of pixel shifts introduced by the positioning error on a satellite linear push-broom image is quantitatively analyzed. We use the variation of the object space coordinate to simulate different kinds of positioning errors and terrain topography. Then a total differential method was applied to establish a rigorous sensor model in order to mathematically obtain the relationship between pixel shift and positioning error. Finally, two simulation experiments are conducted using the imaging parameters of Chang’ E-1 satellite to evaluate two different kinds of positioning errors. The experimental results have shown that with the experimental parameters, the maximum pixel shift could reach 1.74 pixels. The proposed approach can be extended to a generic application for imaging error modeling in remote sensing with terrain variation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Avian intestinal spirochetosis (AIS) is a common disease occurring in poultry that can be caused by Brachyspira pilosicoli, a Gram-negative bacterium of the order Spirochaetes. During AIS, this opportunistic pathogen colonises the lower gastrointestinal (GI) tract of poultry (principally the ileum, caeca and colon), which can cause symptoms such as diarrhoea, reduced growth rate and reduced egg production and quality. Due to the large increase of bacterial resistance to antibiotic treatment, the European Union banned in 2006 the prophylactic use of antibiotics as growth promoters in livestock. Consequently, the number of outbreaks of AIS has dramatically increased in the UK resulting in significant economic losses. This review summaries the current knowledge about AIS infection caused by B. pilosicoli and discusses various treatments and prevention strategies to control AIS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current protocols of anthracycline-induced cardiomyopathy in rabbits present with high premature mortality and nephrotoxicity, thus rendering them unsuitable for studies requiring long-term functional evaluation of myocardial function (e.g., stem cell therapy). We compared two previously described protocols to an in-house developed protocol in three groups: Group DOX2 received doxorubicin 2 mg/kg/week (8 weeks); Group DAU3 received daunorubicin 3 mg/kg/week (10 weeks); and Group DAU4 received daunorubicin 4 mg/kg/week (6 weeks). A cohort of rabbits received saline (control). Results of blood tests, cardiac troponin I, echocardiography, and histopathology were analysed. Whilst DOX2 and DAU3 rabbits showed high premature mortality (50% and 33%, resp.), DAU4 rabbits showed 7.6% premature mortality. None of DOX2 rabbits developed overt dilated cardiomyopathy; 66% of DAU3 rabbits developed overt dilated cardiomyopathy and quickly progressed to severe congestive heart failure. Interestingly, 92% of DAU4 rabbits showed overt dilated cardiomyopathy and 67% developed congestive heart failure exhibiting stable disease. DOX2 and DAU3 rabbits showed alterations of renal function, with DAU3 also exhibiting hepatic function compromise. Thus, a shortened protocol of anthracycline-induced cardiomyopathy as in DAU4 group results in high incidence of overt dilated cardiomyopathy, which insidiously progressed to congestive heart failure, associated to reduced systemic compromise and very low premature mortality.