968 resultados para Laser-induced breakdown spectroscopy
Resumo:
Proliferation of microglial cells has been considered a sign of glial activation and a hallmark of ongoing neurodegenerative diseases. Microglia activation is analyzed in animal models of different eye diseases. Numerous retinal samples are required for each of these studies to obtain relevant data of statistical significance. Because manual quantification of microglial cells is time consuming, the aim of this study was develop an algorithm for automatic identification of retinal microglia. Two groups of adult male Swiss mice were used: age-matched controls (naïve, n = 6) and mice subjected to unilateral laser-induced ocular hypertension (lasered; n = 9). In the latter group, both hypertensive eyes and contralateral untreated retinas were analyzed. Retinal whole mounts were immunostained with anti Iba-1 for detecting microglial cell populations. A new algorithm was developed in MATLAB for microglial quantification; it enabled the quantification of microglial cells in the inner and outer plexiform layers and evaluates the area of the retina occupied by Iba-1+ microglia in the nerve fiber-ganglion cell layer. The automatic method was applied to a set of 6,000 images. To validate the algorithm, mouse retinas were evaluated both manually and computationally; the program correctly assessed the number of cells (Pearson correlation R = 0.94 and R = 0.98 for the inner and outer plexiform layers respectively). Statistically significant differences in glial cell number were found between naïve, lasered eyes and contralateral eyes (P<0.05, naïve versus contralateral eyes; P<0.001, naïve versus lasered eyes and contralateral versus lasered eyes). The algorithm developed is a reliable and fast tool that can evaluate the number of microglial cells in naïve mouse retinas and in retinas exhibiting proliferation. The implementation of this new automatic method can enable faster quantification of microglial cells in retinal pathologies.
Resumo:
The damage mechanisms and micromachining of 6H SiC are studied by using femtosecond laser pulses at wavelengths between near infrared (NIR) and near ultraviolet (NUV) delivered from an optical parametric amplifier (OPA). Our experimental results indicate that high quality microstructures can be fabricated in SiC crystals. On the basis of the dependence of the ablated area and the laser pulse energy, the threshold fluence of SiC is found to increase with the incident laser wavelength in the visible region, while it remains almost constant for the NIR laser. For the NIR laser pulses, both photoionization and impact ionization play important roles in electronic excitation, while for visible lasers, photoionization plays a more important role.
Resumo:
Neutron irradiated high resistivity (4-6 kOMEGA-cm) silicon detectors in the neutron fluence (PHI(n)) range of 5 X 10(11) n/cm2 to 1 X 10(14) n/cm2 have been studied using a laser deep level transient spectroscopy (L-DLTS). It has been found that the A-center (oxygen-vacancy, E(c) = 0.17 eV) concentration increases with neutron fluence, reaching a maximum at PHI(n) almost-equal-to 5 X 10(12) n/cm2 before decreasing with PHI(n). A broad peak has been found between 200 K and 300 K, which is the result of the overlap of three single levels: the V-V- (E(c) = 0.38 eV), the E-center (P-V, E(c) = 0.44 eV), and a level at E(c) = 0.56 eV that is probably V-V0. At low neutron fluences (PHI(n) < 5 X 10(12) n/cm2), this broad peak is dominated by V-V- and the E-centers. However, as the fluence increases (PHI(n) greater-than-or-equal-to 5 X 10(12) n/cm2), the peak becomes dominated by the level of E(c) = 0.56 eV.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Raman induced phase conjugation (RIPC) spectroscopy is a relatively new coherent Raman spectroscopic (CRS) technique using optical phase conjugation (OPC), with which complete Raman spectra of transparent media can be obtained. It is a non-degenerate four-wave mixing technique in which two pulsed laser beams at Ω1 and Ω1 ± Δ where A corresponds to a vibrational frequency of a nonlinear medium mix with a third laser beam at Ω1 to generate a fourth beam Ω1 ± Δ, which is nearly phase conjugate to one of the beams at Ω1. With this technique one can measure the ratio of the resonant and nonresonant components of the third-order nonlinear susceptibilities of the nonlinear media. We have used this technique to get Raman spectra of well-known organic solvents like benzene etc., using pulsed Nd: YAG -dye laser systems. We have also studied the effect of delaying one of the interacting beams with respect to the others and the phase conjugate property of RIPC signals.
Resumo:
The photo-induced effects of Ge12Sb25S63 films illuminated with 532 nm laser light are investigated from transmission spectra measured by FTIR spectroscopy. The material exhibits photo-bleaching (PB) when exposed to band gap light for a prolonged time in a vacuum. The PB is ascribed to structural changes inside the film as well as surface photooxidation. The amorphous nature of thin films was detected by x-ray diffraction. The chemical composition of the deposited thin films was examined by energy dispersive x-ray analysis (EDAX). The refractive indices of the films were obtained from the transmission spectra based on an inverse synthesis method and the optical band gaps were derived from optical absorption spectra using the Tauc plot. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model. It was found that the mechanism of the optical absorption follows the rule of the allowed non-direct transition. Raman and x-ray photoelectron spectra (XPS) were measured and decomposed into several peaks that correspond to the different structural units which support the optical changes.
Resumo:
The nonlinear spectroscopy of cold atoms in the diffuse laser cooling system is studied in this paper. We present the theoretical models of the recoil-induced resonances (RIR) and the electromagnetically-induced absorption (EIA) of cold atoms in diffuse laser light, and show their signals in an experiment of cooling Rb-87 atomic vapor in an integrating sphere. The theoretical results are in good agreement with the experimental ones when the light intensity distribution in the integrating sphere is considered. The differences between nonlinear spectra of cold atoms in the diffuse laser light and in the optical molasses are also discussed. (c) 2009 Optical Society of America
Resumo:
Thermal stress-induced birefringence in borate glass which has been irradiated by 800-nm femtosecond laser pulses is observed under cross-polarized light. Due to the high temperature and pressure formed in the focal volume, the material at the edge of the micro-modified region is compressed between the expanding region and the unheated one, then stress emerges. Raman spectroscopy is used to investigate the stress distribution in the micro-modified region and indicates the redistributions of density and refractive index by Raman peak shift. We suggest that this technique can develop waveguide polarizers and Fresnel zone plates in integrated optics.
Resumo:
Plasma in the air is successfully induced by a free-oscillated Nd:YAG laser pulse with a peak power of 10(2-3) W. The initial free electrons for the cascade breakdown process are from the ablated particles from the surface of a heated coal target, likewise induced by the focused laser beam. The laser field compensates the energy loss of the plasma when the corresponding temperature and the images are investigated by fitting the experimental spectra of B-2 Sigma(+) -> X-2 Sigma(+) band of CN radicals in the plasma with the simulated spectra and a 4-frame CCD camera. The electron density is estimated using a simplified Kramer formula. As this interaction occurs in a gas mixture of hydrogen and oxygen, the formation and development of the plasma are weakened or restrained due to the chaining branch reaction in which the OH radicals are accumulated and the laser energy is consumed. Moreover, this laser ignition will initiate the combustion or explosion process of combustible gas and the minimum ignition energy is measured at different initial pressures. The differences in the experimental results compared to those induced by a nanosecond Q-switched laser pulse with a peak power of 10(6-8) W are also discussed. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
Resumo:
The degradation behavior of polyimide (PMDA-ODA) induced by nitrogen laser irradiation was studied. The changes in the surface morphology and the composition of the irradiated polyimide films were examined by scanning electron microscopy, X-ray photoelectron spectroscopy and FT-IR spectroscopy. The initial reaction was achieved by photochemical degradation of polyimide in the highly electronic excited state by the absorption of a second 337 nm photon. Atmospheric oxygen sequentially reacted with the produced radicals to form a highly oxidized layer. The formation of carbonyl group was enhanced by the heat remaining on the irradiated polyimide film surfaces. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
In this thesis, a magneto-optical trap setup is used to laser cool and confine a cloud of 85Rb. The cloud typically contains 108 atoms in a 1 mm3 volume at a temperature in the region of the Doppler Limit (146 _K for 85Rb). To study the cold cloud, a subwavelength optical fibre - a nanofibre, or ONF - is positioned inside the cloud. The ONF can be used in two ways. Firstly, it is an efficient fluorescence collection tool for the cold atoms. Loading times, lifetimes and temperatures can be measured by coupling the atomic fluorescence to the evanescent region of the ONF. Secondly, the ONF is used as a probe beam delivery tool using the evanescent field properties of the device, allowing one to perform spectroscopy on few numbers of near-surface atoms. With improvements in optical density of the cloud, this system is an ideal candidate in which to generate electromagnetically induced transparency and slow light. A theoretical study of the van der Waals and Casimir-Polder interactions between an atom and a dielectric surface is also presented in this work in order to understand their effects in the spectroscopy of near-surface atoms.
Resumo:
Ion-acceleration processes have been studied in ultraintense laser plasma interactions for normal incidence irradiation of solid deuterated targets via neutron spectroscopy. The experimental neutron spectra strongly suggest that the ions are preferentially accelerated radially, rather than into the bulk of the material from three-dimensional Monte Carlo fitting of the neutron spectra. Although the laser system has a 10(-7) contrast ratio, a two-dimensional magnetic hydrodynamics simulation shows that the laser pedestal generates a 10 mum scale length in the coronal plasma with a 3 mum scale-length plasma near the critical density. Two-dimensional particle-in-cell simulations, incorporating this realistic density profile, indicate that the acceleration of the ions is caused by a collisionless shock formation. This has implications for modeling energy transport in solid is caused by a collisionless shock formation. This has implications for modeling energy transport in solid density plasmas as well as cone-focused fast ignition using the next generation PW lasers currently under construction.
Resumo:
Titanium dioxide has been extensively used in photocatalysis and dye-sensitized solar cells, where control of the anatase-to-rutile phase transformation may allow the realization of more efficient devices exploiting the synergic effects at anatase/rutile interfaces. Thus, a systematic study showing the proof of concept of a dye-induced morphological transition and an anatase-to-rutile transition based on visible laser (532 nm) and nano/micro patterning of mesoporous anatase (Degussa P25 TiO(2)) films is described for the first time using a confocal Raman microscope. At low laser intensities, only the bleaching of the adsorbed N3 dye was observed. However, high enough temperatures to promote melting/densification processes and create a deep hole at the focus and an extensive phase transformation in the surrounding material were achieved using Is laser pulses of 25-41 mW/cm(2), in resonance with the MLCT band. The dye was shown to play a key role, being responsible for the absorption and efficient conversion of the laser light into heat. As a matter of fact, the dye is photothermally decomposed to amorphous carbon or to gaseous species (CO(x), NO(x), and H(2)O) under a N(2) or O(2) atmosphere, respectively.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)