N3-Dye-Induced Visible Laser Anatase-to-Rutile Phase Transition on Mesoporous TiO(2) Films
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2011
|
Resumo |
Titanium dioxide has been extensively used in photocatalysis and dye-sensitized solar cells, where control of the anatase-to-rutile phase transformation may allow the realization of more efficient devices exploiting the synergic effects at anatase/rutile interfaces. Thus, a systematic study showing the proof of concept of a dye-induced morphological transition and an anatase-to-rutile transition based on visible laser (532 nm) and nano/micro patterning of mesoporous anatase (Degussa P25 TiO(2)) films is described for the first time using a confocal Raman microscope. At low laser intensities, only the bleaching of the adsorbed N3 dye was observed. However, high enough temperatures to promote melting/densification processes and create a deep hole at the focus and an extensive phase transformation in the surrounding material were achieved using Is laser pulses of 25-41 mW/cm(2), in resonance with the MLCT band. The dye was shown to play a key role, being responsible for the absorption and efficient conversion of the laser light into heat. As a matter of fact, the dye is photothermally decomposed to amorphous carbon or to gaseous species (CO(x), NO(x), and H(2)O) under a N(2) or O(2) atmosphere, respectively. FAPESP Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) PETROBRAS PETROBRAS |
Identificador |
LANGMUIR, v.27, n.15, p.9094-9099, 2011 0743-7463 http://producao.usp.br/handle/BDPI/31066 10.1021/la201838z |
Idioma(s) |
eng |
Publicador |
AMER CHEMICAL SOC |
Relação |
Langmuir |
Direitos |
closedAccess Copyright AMER CHEMICAL SOC |
Palavras-Chave | #TITANIUM-DIOXIDE #CHARGE-TRANSFER #NANOCRYSTALLINE TITANIA #RAMAN-SPECTROSCOPY #SURFACE SCIENCE #TRANSFORMATION #DYE #NANOPARTICLES #STABILITY #COMPLEXES #Chemistry, Multidisciplinary #Chemistry, Physical #Materials Science, Multidisciplinary |
Tipo |
article original article publishedVersion |