975 resultados para Joint Compensation Scheme


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high order accurate finite difference method for direct numerical simulation of coherent structure in the mixing layers is presented. The reason for oscillation production in numerical solutions is analyzed, It is caused by a nonuniform group velocity of wavepackets. A method of group velocity control for the improvement of the shock resolution is presented. In numerical simulation the fifth-order accurate upwind compact difference relation is used to approximate the derivatives in the convection terms of the compressible N-S equations, a sixth-order accurate symmetric compact difference relation is used to approximate the viscous terms, and a three-stage R-K method is used to advance in time. In order to improve the shock resolution the scheme is reconstructed with the method of diffusion analogy which is used to control the group velocity of wavepackets. (C) 1997 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A perturbational h4 compact exponential finite difference scheme with diagonally dominant coefficient matrix and upwind effect is developed for the convective diffusion equation. Perturbations of second order are exerted on the convective coefficients and source term of an h2 exponential finite difference scheme proposed in this paper based on a transformation to eliminate the upwind effect of the convective diffusion equation. Four numerical examples including one- to three-dimensional model equations of fluid flow and a problem of natural convective heat transfer are given to illustrate the excellent behavior of the present exponential schemes, the h4 accuracy of the perturbational scheme is verified using double precision arithmetic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact upwind scheme with dispersion control is developed using a dissipation analogy of the dispersion term. The term is important in reducing the unphysical fluctuations in numerical solutions. The scheme depends on three free parameters that may be used to regulate the size of dissipation as well as the size and direction of dispersion. A coefficient to coordinate the dispersion is given. The scheme has high accuracy, the method is simple, and the amount of computation is small. It also has a good capability of capturing shock waves. Numerical experiments are carried out with two-dimensional shock wave reflections and the results are very satisfactory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perturbations are applied to the convective coefficients and source term of a convection-diffusion equation so that second-order corrections may be applied to a second-order exponential scheme. The basic Structure of the equations in the resulting fourth-order scheme is identical to that for the second order. Furthermore, the calculations are quite simple as the second-order corrections may be obtained in a single pass using a second-order scheme. For one to three dimensions, the fourth-order exponential scheme is unconditionally stable. As examples, the method is applied to Burgers' and other fluid mechanics problems. Compared with schemes normally used, the accuracies are found to be good and the method is applicable to regions with large gradients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Revised 2006-06