870 resultados para Intestinal metaplasia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium avium subsp. avium (Maa) is an intracellular pathogen belonging to the Mycobacterium avium-intracellulare complex (MAC). Reservoirs of MAC are the natural environment, wildlife and domestic animals. In adult bovine, MAC infections are typically caused by Mycobacterium avium subsp. paratuberculosis (Map). Maa infections in bovine are rarely reported but may cause clinical disease and pathological lesions similar to those observed in paratuberculosis or those induced by members of the Mycobacterium tuberculosis complex (MTBC). Therefore, differentiation of MAC from MTBC infection should be attempted, especially if unusual mycobacterial lesions are encountered. Four veal calves from a fattening farm dying with clinical signs of otitis media, fever, and weight loss were submitted for necropsy. Samples from affected organs were taken for histologic investigation, bacteriologic culture, and bacterial specification using PCR. Macroscopic thickening of the intestinal mucosa was induced by granulomatous enteritis and colitis. Intracytoplasmic acid-fast bacteria were detected by Ziehl-Neelsen stains and PCR revealed positive results for Mycobacterium avium subsp. avium. Clinical and pathological changes of Maa infection in veal calves had features of Mycobacterium avium subsp. paratuberculosis and the MTBC. Therefore, Mycobacterium tuberculosis complex infection should be considered in cases of granulomatous enteritis in calves.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inflammasome is a complex of proteins that controls the activity of caspase-1, pro-IL-1b and pro-IL-18. It acts in inflammatory processes and in pyropoptosis. The lower intestine is densely populated by a community of commensal bacteria that, under healthy conditions, are beneficial to the host. Some evidence suggests that the gut microbiota influences regulation of the inflammasome. Components of inflammasomes have been shown to have a protective function against development of experimental colitis, dependent on IL-18 production. However the precise mechanisms and the role of the inflammasome in maintaining a healthy host-microbial mutualism remains unknown. To address this question, we have performed axenic (GF) and gnotobiotic in vivo experiments to investigate how the inflammasome components mainly at the level of intestinal epithelial cells (IECs) are regulated under different hygiene conditions. We have established that gene expression of the inflammasome components NLRC4, NLRP3, NLRP6, NLRP12, caspase-1, ASC and IL-18 do not differ between germ-free and colonised conditions under steady-state. In contrast, induction in IL-18 was observed following infection with the pathobiont Segmented Filamentous Bacteria or the pathogen C. rodentium. Additional preliminar findings suggest that a more diverse intestinal flora, like specific pathogen-free (SPF) flora, is more efficient in inducing basal activation of the inflammasome and especially production of IL-18 by IECs, shortly after colonisation. We are also in the process of testing if basal activation of the inflammasome upon intestinal colonization with commensal bacteria helps to protect the host from potential pathobiont bacteria, like C. rodentium, SFB, Prevotella and TM7.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chinese Shar-Pei dogs have a high prevalence of hypocobalaminemia and are commonly presented with clinical signs suggestive of severe and long-standing gastrointestinal disease such as diarrhea, vomiting, and/or weight loss. The aim of the current study was to evaluate serum concentrations of inflammatory markers, markers for intestinal disease, and immunological markers in Shar-Peis with hypocobalaminemia or normocobalaminemia (serum cobalamin concentrations within the reference interval). Serum samples from Shar-Peis were collected from various parts of the United States. Serum concentrations of inflammatory markers (i.e., C-reactive protein [CRP], calprotectin [CP], and S100A12), hyaluronic acid (HA, a marker for cutaneous mucinosis), and analytes commonly altered in chronic intestinal diseases (i.e., albumin, zinc, alpha1-proteinease inhibitor [α1PI], immunoglobulin [Ig]A, and IgM) were compared between Shar-Peis with hypocobalaminemia and Shar-Peis with normocobalaminemia. Serum concentrations of CRP, CP, S100A12, HA, zinc, and cα1-PI concentrations did not differ between hypocobalaminemic and normocobalaminemic Shar-Peis (P > 0.05). Serum concentrations of albumin were significantly lower in hypocobalaminemic Shar-Peis (median: 2.5 g/dl) than in normocobalaminemic Shar-Peis (median: 2.9 g/dl; P < 0.0001). Higher serum IgA concentrations and lower serum IgM concentrations were observed in hypocobalaminemic Shar-Peis (median: 1.7 g/l and 0.8 g/l, respectively) than in normocobalaminemic Shar-Peis (median: 0.7 g/l and 1.9 g/l, respectively; both P < 0.0001). In conclusion, no difference was found in serum concentrations of CRP, CP, S100A12, and HA between hypocobalaminemic and normocobalaminemic Shar-Peis whereas some differences were observed in analytes (e.g., albumin, IgA, and IgM) that may be altered in patients with chronic enteropathies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Hemodialysis patients are high absorbers of intestinal cholesterol; they benefit less than other patient groups from statin therapy, which inhibits cholesterol synthesis. OBJECTIVES This study sought to investigate whether the individual cholesterol absorption rate affects atorvastatin's effectiveness to reduce cardiovascular risk in hemodialysis patients. METHODS This post-hoc analysis included 1,030 participants in the German Diabetes and Dialysis Study (4D) who were randomized to either 20 mg of atorvastatin (n = 519) or placebo (n = 511). The primary endpoint was a composite of major cardiovascular events. Secondary endpoints included all-cause mortality and all cardiac events. Tertiles of the cholestanol-to-cholesterol ratio, which is an established biomarker of cholesterol absorption, were used to identify high and low cholesterol absorbers. RESULTS A total of 454 primary endpoints occurred. On multivariate time-to-event analyses, the interaction term between tertiles and treatment with atorvastatin was significantly associated with the risk of reaching the primary endpoint. Stratified analysis by cholestanol-to-cholesterol ratio tertiles confirmed this effect modification: atorvastatin reduced the risk of reaching the primary endpoint in the first tertile (hazard ratio [HR]: 0.72; p = 0.049), but not the second (HR: 0.79; p = 0.225) or third tertiles (HR: 1.21; p = 0.287). Atorvastatin consistently significantly reduced all-cause mortality and the risk of all cardiac events in only the first tertile. CONCLUSIONS Intestinal cholesterol absorption, as reflected by cholestanol-to-cholesterol ratios, predicts the effectiveness of atorvastatin to reduce cardiovascular risk in hemodialysis patients. Those with low cholesterol absorption appear to benefit from treatment with atorvastatin, whereas those with high absorption do not benefit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the mammalian gastrointestinal tract the close vicinity of abundant immune effector cells and trillions of commensal microbes requires sophisticated barrier and regulatory mechanisms to maintain vital host-microbial interactions and tissue homeostasis. During co-evolution of the host and its intestinal microbiota a protective multilayered barrier system was established to segregate the luminal microbes from the intestinal mucosa with its potent immune effector cells, limit bacterial translocation into host tissues to prevent tissue damage, while ensuring the vital functions of the intestinal mucosa and the luminal gut microbiota. In the present review we will focus on the different layers of protection in the intestinal tract that allow the successful mutualism between the microbiota and the potent effector cells of the intestinal innate and adaptive immune system. In particular, we will review some of the recent findings on the vital functions of the mucus layer and its site-specific adaptations to the changing quantities and complexities of the microbiota along the (gastro-) intestinal tract. Understanding the regulatory pathways that control the establishment of the mucus layer, but also its degradation during intestinal inflammation may be critical for designing novel strategies aimed at maintaining local tissue homeostasis and supporting remission from relapsing intestinal inflammation in patients with inflammatory bowel diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The barrier surfaces of the skin, lung, and intestine are constantly exposed to environmental stimuli that can result in inflammation and tissue damage. Interleukin (IL)-33-dependent group 2 innate lymphoid cells (ILC2s) are enriched at barrier surfaces and have been implicated in promoting inflammation; however, the mechanisms underlying the tissue-protective roles of IL-33 or ILC2s at surfaces such as the intestine remain poorly defined. Here we demonstrate that, following activation with IL-33, expression of the growth factor amphiregulin (AREG) is a dominant functional signature of gut-associated ILC2s. In the context of a murine model of intestinal damage and inflammation, the frequency and number of AREG-expressing ILC2s increases following intestinal injury and genetic disruption of the endogenous AREG-epidermal growth factor receptor (EGFR) pathway exacerbated disease. Administration of exogenous AREG limited intestinal inflammation and decreased disease severity in both lymphocyte-sufficient and lymphocyte-deficient mice, revealing a previously unrecognized innate immune mechanism of intestinal tissue protection. Furthermore, treatment with IL-33 or transfer of ILC2s ameliorated intestinal disease severity in an AREG-dependent manner. Collectively, these data reveal a critical feedback loop in which cytokine cues from damaged epithelia activate innate immune cells to express growth factors essential for ILC-dependent restoration of epithelial barrier function and maintenance of tissue homeostasis.