987 resultados para Interferon-gamma -- immunology
Resumo:
T-cell cytokine profiles, anti Porphyromonas gingivalis antibodies and Western blot analysis of antibody responses were examined in BALB/c, CBA/CaH, C57BL6 and DBA/2J mice immunized intraperitoneally with different doses of P. gingivalis outer membrane antigens, Splenic CD4 and CD8 cells were examined for intracytoplasmic interleukin (IL)-4, interferon (IFN)-gamma and IL-LD by FAGS analysis and levels of anti-P. gingivalis antibodies in the serum samples determined by enzyme-linked immunosorbent assay. Western blot analysis was performed on the sera from mice immunized with 100 mug of P. gingivalis antigens. The four strains of mice demonstrated varying degrees of T-cell immunity although the T-cell cytokine profiles exhibited by each strain were not affected by different immunizing doses. While BALB/c and DBA/2J mice exhibited responses that peaked at immunizing doses of 100-200 mug of P. gingivalis antigens, CBA/CaH and C57BL6 demonstrated weak T-cell responsiveness compared with control mice. Like the T-cell responses, serum antibody levels were not dose dependent. DBA/23 exhibited the lowest levels of anti-P. gingivalis antibodies followed by BALB/c with CBA/CaH and C57BL6 mice demonstrating the highest levels. Western blot analysis showed that there were differences in reactivity between the strains to a group of 13 antigens ranging in molecular weight from 15 to 43 kDa. Antibody responses to a number of these bands in BALB/c mice were of low density, whereas CBA/CaH and C57BL6 mice demonstrated high-density bands and DBA/2J mice showed medium to high responses. In conclusion, different immunizing doses of P. gingivalis outer membrane antigens had little effect on the T-cell cytokine responses and serum anti-P. gingivalis antibody levels. Western blot analysis, however, indicated that the four strains of mice exhibited different reactivity to some lower-molecular-weight antigens. Future studies are required to determine the significance of these differences, which may affect the outcome of P. gingivalis infection.
Resumo:
T cell cytokine profiles and specific serum antibody levels in five groups of BALB/c mice immunized with saline alone, viable Fusobacterium nucleatum ATCC 25586, viable Porphyromonas gingivalis ATCC 33277, F. nucleatum followed by P. gingivalis and P. gingivalis followed by F nucleatum were determined. Splenic CD4 and CD8 cells were examined for intracytoplasmic interleukin (IL)-4, interferon (IFN)-gamma and IL-10 by dual colour flow cytometry and the levels of serum anti-F. nucleatum and anti-P. gingivalis antibodies determined by an ELISA. Both Th1 and Th2 responses were demonstrated by all groups, and while there were slightly lower percentages of cytokine positive T cells in mice injected with F. nucleatum alone compared with the other groups immunized with bacteria., F nucleatum had no effect on the T cell production of cytokines induced by P gingivalis in the two groups immunized with both organisms. However, the percentages of cytokine positive CD8 cells were generally significantly higher than those of the CD4 cells. Mice immunized with F nucleatum alone had high levels of serum anti-E nucleatum antibodies with very low levels of P. gingivalis antibodies, whereas mice injected with P gingivalis alone produced anti-P. gingivalis antibodies predominantly. Although the levels of anti-E nucleatum antibodies in mice injected with E nucleatum followed by P. gingivalis were the same as in mice immunized with F nucleatum alone, antibody levels to P. gingivalis were very low. In contrast, mice injected with P. gingivalis followed by F nucleatum produced equal levels of both anti-P. gingivalis and anti-F nucleatum antibodies, although at lower levels than the other three groups immunized with bacteria, respectively. Anti-Actinobacillus actitiomycetemcomitans, Bacteroides forsythus and Prevotella intermedia serum antibody levels were also determined and found to be negligible. In conclusion, F nucleatum immunization does not affect the splenic T cell cytokine response to P. gingivalis. However, F nucleatum immunization prior to that of P. gingivalis almost completely inhibited the production of anti-P gingivalis antibodies while P. gingivalis injection before F. nucleatum demonstrated a partial inhibitory effect by P. gingivalis on antibody production to F. nucleatum. The significance of these results with respect to human periodontal disease is difficult to determine. However, they may explain in part differing responses to P. gingivalis in different individuals who may or may not have had prior exposure to F. nucleatum. Finally, the results suggested that P. gingivalis and F. nucleatum do not induce the production of cross-reactive antibodies to other oral microorganisms.
Resumo:
Heat shock protein 60s (hsp60) are remarkably immunogenic, and both T-cell and antibody responses to hsp60 have been reported in various inflammatory conditions. To clarify the role of hsp60 in T-cell responses in periodontitis, we examined the proliferative response of peripheral blood mononuclear cells (PBMC), as well as the cytokine profile and T-cell clonality, for periodontitis patients and controls following stimulation with recombinant human hsp60 and Porphyromonas gingivalis GroEL. To confirm the infiltration of hsp60-reactive T-cell clones into periodontitis lesions, nucleotide sequences within complementarity-determining region 3 of the T-cell receptor (TCR) beta-chain were compared between hsp60-reactive peripheral blood T cells and periodontitis lesion-infiltrating T cells. Periodontitis patients demonstrated significantly higher proliferative responses of PBMC to human hsp60, but not to P. gingivalis GroEL, than control subjects. The response was inhibited by anti-major histocompatibility complex class 11 antibodies. Analysis of the nucleotide sequences of the TCR demonstrated that human hsp60-reactive T-cell clones and periodontitis lesion-infiltrating T cells have the same receptors, suggesting that hsp60-reactive T cells accumulate in periodontitis lesions. Analysis of the cytokine profile demonstrated that hsp60-reactive PBMC produced significant levels of gamma interferon (IFN-gamma) in periodontitis patients, whereas P. gingivalis GroEL did not induce any, skewing toward a type1 or type2 cytokine profile. In control subjects no significant expression of IFN-gamma or interleukin 4 was induced. These results suggest that periodontitis patients have human hsp60-reactive T cells with a type I cytokine profile in their peripheral blood T-cell pools.
Resumo:
Lymphocyte proliferation and cytokine production were measured in groups of mice vaccinated (but not subsequently challenge infected) with recombinant forms of Schistosoma japonicum cathepsin D aspartic protease, rSjASP1 (expressed in bacteria; enzymatically inactive) and rSjASP2 (expressed in insect cells; enzymatically active). Both forms of the schistosome enzyme induced significant proliferation of splenocytes recovered from vaccinated mice, and expression of interferon (IFN)-gamma, interleukin (IL)-4 and IL-10 mRNA in these cells was detected using reverse transcriptase-polymerase chain reaction. Secretion of IFN-gamma, IL-4 and IL-10 by splenocytes from vaccinated mice was confirmed and quantified using enzyme-linked immunosorbent assay. IFN-gamma was the most abundant cytokine produced, followed by IL-4 and IL-10 in rank order. These findings indicated that vaccination of mice with the schistosome protease induces a mixed Th1/Th2 cytokine response, which may explain the modest level of protection after challenge infection in cathepsin d-vaccinated mice, reported previously.
Resumo:
This study compared the serum levels of IL-6, TNF-alpha and IFN-gamma, in children under 1 year of age with and without dengue. Sera were collected from a total of 41 children living in the Department of Antioquia, Colombia (27 patients with dengue and 14 controls). The results showed higher cytokine levels in children with dengue than without dengue, with statistically significant differences for IL-6 and IFN-gamma. No statistically significant differences were found between clinical forms, although IL-6 and IFN-gamma levels were higher in dengue fever cases than in dengue hemorrhagic fever cases. On the other hand, TNF-alpha levels were higher in dengue hemorrhagic fever than in dengue fever. The levels of IL-6 and TNF-alpha were higher in secondary infection than in primary infection, although IFN-gamma levels were higher in primary infection. These results suggest that IL-6, TNF-alpha and IFN-gamma are involved in dengue infection independently of the clinical form.
Resumo:
Granulomas are the hallmark of mycobacterial disease. Here, we demonstrate that both the cell recruitment and the increased glucose consumption in granulomatous infiltrates during Mycobacterium avium infection are highly dependent on interferon-y (IFN-y). Mycobacterium avium-infected mice lacking IFN-y signalling failed to developed significant inflammatory infiltrations and lacked the characteristic uptake of the glucose analogue fluorine-18-fluorodeoxyglucose (FDG). To assess the role of macrophages in glucose uptake we infected mice with a selective impairment of IFN-y signalling in the macrophage lineage (MIIG mice). Although only a partial reduction of the granulomatous areas was observed in infected MIIG mice, the insensitivity of macrophages to IFN-y reduced the accumulation of FDG. In vivo, ex vivo and in vitro assays showed that macrophage activated by IFN-y displayed increased rates of glucose uptake and in vitro studies showed also that they had increased lactate production and increased expression of key glycolytic enzymes. Overall, our results show that the activation of macrophages by IFN-y is responsible for the Warburg effect observed in organs infected with M. avium.
Resumo:
Recent studies have demonstrated the immunomodulatory properties of vitamin D, and vitamin D deficiency may be a risk factor for the development of MS. The risk of developing MS has, in fact, been associated with rising latitudes, past exposure to sun and serum vitamin D status. Serum 25-hydroxyvitamin D [25(OH)D] levels have also been associated with relapses and disability progression. The identification of risk factors, such as vitamin D deficiency, in MS may provide an opportunity to improve current treatment strategies, through combination therapy with established MS treatments. Accordingly, vitamin D may play a role in MS therapy. Small clinical studies of vitamin D supplementation in patients with MS have reported positive immunomodulatory effects, reduced relapse rates and a reduction in the number of gadolinium-enhancing lesions. However, large randomized clinical trials of vitamin D supplementation in patients with MS are lacking. SOLAR (Supplementation of VigantOL(®) oil versus placebo as Add-on in patients with relapsing-remitting multiple sclerosis receiving Rebif(®) treatment) is a 96-week, three-arm, multicenter, double-blind, randomized, placebo-controlled, Phase II trial (NCT01285401). SOLAR will evaluate the efficacy of vitamin D(3) as add-on therapy to subcutaneous interferon beta-1a in patients with RRMS. Recruitment began in February 2011 and is aimed to take place over 1 calendar year due to the potential influence of seasonal differences in 25(OH)D levels.
Resumo:
Human amniotic interferon was investigated to define the species specificity of its antiviral action and compare its anti-cellular and NK cell stimulating activities with those of other human interferons. The antiviral effect was titrated in bovine (RV-IAL) and monkey (VERO) cells. Amniotic interferon exhibited, in bovine cells, 5% of the activity seen in monkey cells, while alpha interferon displayed 200%. No effect was detected with either beta or gamma interferon in bovine cells. Daudi cells were exposed to different concentrations of various interferons and the cell numbers were determined. The anticellular effect of the amniotic interferon reached its peak on the third day of incubation. Results suggested a higher activity for alpha and gamma interferons and a lower activity for beta when compared to amniotic interferon. Using total mononuclear cells as effector cells and K 562 as target cell in a 51Cr release assay, it was demonstrated that low concentrations of amniotic interferon consistently stimulated NK cell activity in cells derived from several donors, the results indicating a higher level of activity with this interferon than with alpha and beta interferons.
Resumo:
Commitment of the alpha beta and gamma delta T cell lineages within the thymus has been studied in T cell receptor (TCR)-transgenic and TCR mutant murine strains. TCR gamma delta-transgenic or TCR beta knockout mice, both of which are unable to generate TCR alpha beta-positive T cells, develop phenotypically alpha beta-like thymocytes in significant proportions. We provide evidence that in the absence of functional TCR beta protein, the gamma delta TCR can promote the development of alpha beta-like thymocytes, which, however, do not expand significantly and do not mature into gamma delta T cells. These results show that commitment to the alpha beta lineage can be determined independently of the isotype of the TCR, and suggest that alpha beta versus gamma delta T cell lineage commitment is principally regulated by mechanisms distinct from TCR-mediated selection. To accommodate our data and those reported previously on the effect of TCR gamma and delta gene rearrangements on alpha beta T cell development, we propose a model in which lineage commitment occurs independently of TCR gene rearrangement.
Resumo:
Increasing evidence suggests that adoptive transfer of antigen-specific CD8(+) T cells could represent an effective strategy in the fight against chronic viral infections and malignancies such as melanoma. None the less, a major limitation in the implementation of such therapy resides in the difficulties associated with achieving rapid and efficient expansion of functional T cells in culture necessary to obtain the large numbers required for intravenous infusion. Recently, the critical role of the cytokines interleukin (IL)-2, IL-7 and IL-15 in driving T cell proliferation has been emphasized, thus suggesting their use in the optimization of expansion protocols. We have used major histocompatibility complex (MHC) class I/peptide multimers to monitor the expansion of antigen-specific CD8 T lymphocytes from whole blood, exploring the effect of antigenic peptide dose, IL-2, IL-7 and IL-15 concentrations on the magnitude and functional characteristics of the antigen-specific CD8(+) T cells generated. We show here that significant expansions of antigen-specific T cells, up to 50% of the CD8(+) T cell population, can be obtained after a single round of antigen/cytokine (IL-2 or IL-15) stimulation, and that these cells display good cytolytic and interferon (IFN)-gamma secretion capabilities. Our results provide an important basis for the rapid in vitro expansion of autologous T cells from the circulating lymphocyte pool using a simple procedure, which is necessary for the development of adoptive transfer therapies.
Resumo:
Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a member of the nuclear hormone superfamily originally characterized as a regulator of adipocyte differentiation and lipid metabolism. In addition, PPAR-gamma has important immunomodulatory functions. If the effect of PPAR-gamma's activation in T-cell-mediated demyelination has been recently demonstrated, nothing is known about the role of PPAR-gamma in antibody-induced demyelination in the absence of T-cell interactions and monocyte/macrophage activation. Therefore, we investigated PPAR-gamma's involvement by using an in vitro model of inflammatory demyelination in three-dimensional aggregating rat brain cell cultures. We found that PPAR-gamma was not constitutively expressed in these cultures but was strongly up-regulated following demyelination mediated by antibodies directed against myelin oligodendrocyte glycoprotein (MOG) in the presence of complement. Pioglitazone, a selective PPAR-gamma agonist, partially protected aggregates from anti-MOG demyelination. Heat shock responses and the expression of the proinflammatory cytokine tumor necrosis factor-alpha were diminished by pioglitazone treatment. Therefore, pioglitazone protection seems to be linked to an inhibition of glial cell proinflammatory activities following anti-MOG induced demyelination. We show that PPAR-gamma agonists act not only on T cells but also on antibody-mediated demyelination. This may represent a significant benefit in treating multiple sclerosis patients.
Resumo:
During fetal life, CD4(+)CD3(-) lymphoid tissue inducer (LTi) cells are required for lymph node and Peyer's patch development in mice. In adult animals, CD4(+)CD3(-) cells are found in low numbers in lymphoid organs. Whether adult CD4(+)CD3(-) cells are LTi cells and are generated and maintained through cytokine signals has not been directly addressed. In this study we show that adult CD4(+)CD3(-) cells adoptively transferred into neonatal CXCR5(-/-) mice induced the formation of intestinal lymphoid tissues, demonstrating for the first time their bona fide LTi function. Increasing IL-7 availability in wild-type mice either by IL-7 transgene expression or treatment with IL-7/anti-IL-7 complexes increased adult LTi cell numbers through de novo generation from bone marrow cells and increased the survival and proliferation of LTi cells. Our observations demonstrate that adult CD4(+)lineage(-) cells are LTi cells and that the availability of IL-7 determines the size of the adult LTi cell pool.
Resumo:
We have reported earlier that purified preparations of sheep fetal hemoglobin, but not adult hemoglobin, in concert with non-stimulatory doses of lipopolysaccharide (LPS) (lipid A), act cooperatively to regulate in vitro production of a number of cytokines, including TNFalpha, TGFbeta and IL-6 from murine and human leukocytes. Following in vivo treatment of mice with the same combination of hemoglobin and LPS, harvested spleen or peritoneal cells showed a similar augmented capacity to release these cytokines into culture supernatants. We report below that genetically cloned gamma-chain of human or sheep fetal hemoglobin, but not cloned alpha- or beta-chains, can produce this cooperative effect, as indeed can HPLC purified, heme-free, gamma-chains derived from cord blood fetal hemoglobin, and that purified haptoglobin completely abolishes the cooperative interaction.
Resumo:
T cell factor-1 (Tcf-1) is a transcription factor that binds to a sequence motif present in several T cell-specific enhancer elements. In Tcf-1-deficient (Tcf-1-/-) mice, thymocyte development is partially blocked at the transition from the CD4-8+ immature single-positive stage to the CD4+8+ double-positive stage, resulting in a marked decrease of mature peripheral T cells in lymph node and spleen. We report here that the development of most intestinal TCR gamma delta+ cells and liver CD4+ NK1.1+TCR alpha beta+ (NK1+T) cells, which are believed to be of extrathymic origin, is selectively impaired in Tcf-1-/- mice. In contrast, thymic and thymus-derived (splenic) TCR gamma delta+ cells are present in normal numbers in Tcf-1-/- mice, as are other T cell subsets in intestine and liver. Collectively, our data suggest that Tcf-1 is differentially required for the development of some extrathymic T cell subsets, including intestinal TCR gamma delta+ cells and liver CD4+ NK1+T cells.