988 resultados para Instrumentation and orchestration.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We demonstrate the phase fluctuation introduced by oscillation of scattering centers in the focal volume of an ultrasound transducer in an optical tomography experiment has a nonzero mean. The conditions to be met for the above are: (i) the frequency of the ultrasound should be in the vicinity of the most dominant natural frequency of vibration of the ultrasound focal volume, (ii) the corresponding acoustic wavelength should be much larger than l(n)*, a modified transport mean-free-path applicable for phase decorrelation and (iii) the focal volume of the ultrasound transducer should not be larger than 4 - 5 times (l(n)*)(3). We demonstrate through simulations that as the ratio of the ultrasound focal volume to (l(n)*)(3) increases, the average of the phase fluctuation decreases and becomes zero when the focal volume becomes greater than around 4(l(n)*)(3); and through simulations and experiments that as the acoustic frequency increases from 100 Hz to 1 MHz, the average phase decreases to zero. Through experiments done in chicken breast we show that the average phase increases from around 110 degrees to 130 degrees when the background medium is changed from water to glycerol, indicating that the average of the phase fluctuation can be used to sense changes in refractive index deep within tissue.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbon nanotubes (CNT) in bulk form offer outstanding structural and functional properties, and are shown to remain viscoelastic over a wide temperature range (77-1273 K) under inert conditions. We examine the quasi-static and dynamic compressive mechanical response of these cellular CNT materials in ambient air up to a temperature of 773 K. In uniaxial quasi-static compression, several displacement bursts are noted at large strains. These are results of the slippage and zipping of the CNT, and lead to significant mechanical energy absorption. Results of the dynamic mechanical analysis experiments show no degradation in storage modulus and loss coefficient for up to 20 h at 673 K. Hence, these stable cellular CNT structures can be utilized up to a maximum temperature of 673 K in air, which is much higher than the best polymers. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Monitoring and visualizing specimens at a large penetration depth is a challenge. At depths of hundreds of microns, several physical effects (such as, scattering, PSF distortion and noise) deteriorate the image quality and prohibit a detailed study of key biological phenomena. In this study, we use a Bessel-like beam in-conjugation with an orthogonal detection system to achieve depth imaging. A Bessel-like penetrating diffractionless beam is generated by engineering the back-aperture of the excitation objective. The proposed excitation scheme allows continuous scanning by simply translating the detection PSF. This type of imaging system is beneficial for obtaining depth information from any desired specimen layer, including nano-particle tracking in thick tissue. As demonstrated by imaging the fluorescent polymer-tagged-CaCO3 particles and yeast cells in a tissue-like gel-matrix, the system offers a penetration depth that extends up to 650 mu m. This achievement will advance the field of fluorescence imaging and deep nano-particle tracking.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Real-time image reconstruction is essential for improving the temporal resolution of fluorescence microscopy. A number of unavoidable processes such as, optical aberration, noise and scattering degrade image quality, thereby making image reconstruction an ill-posed problem. Maximum likelihood is an attractive technique for data reconstruction especially when the problem is ill-posed. Iterative nature of the maximum likelihood technique eludes real-time imaging. Here we propose and demonstrate a compute unified device architecture (CUDA) based fast computing engine for real-time 3D fluorescence imaging. A maximum performance boost of 210x is reported. Easy availability of powerful computing engines is a boon and may accelerate to realize real-time 3D fluorescence imaging. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.4754604]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports the fabrication and characterization of an ultrafast laser written Er-doped chalcogenide glass buried waveguide amplifier; Er-doped GeGaS glass has been synthesized by the vacuum sealed melt quenching technique. Waveguides have been fabricated inside the 4 mm long sample by direct ultrafast laser writing. The total passive fiber-to-fiber insertion loss is 2.58 +/- 0.02 dB at 1600 nm, including a propagation loss of 1.6 +/- 0.3 dB. Active characterization shows a relative gain of 2.524 +/- 0.002 dB/cm and 1.359 +/- 0.005 dB/cm at 1541 nm and 1550 nm respectively, for a pump power of 500 mW at a wavelength of 980 nm. (C) 2012 Optical Society of America

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We demonstrate here that mesoporous tin dioxide (abbreviated M-SnO2) with a broad pore size distribution can be a prospective anode in lithium-ion batteries. M-SnO2 with pore size ranging between 2 and 7.5 nm was synthesized using a hydrothermal procedure involving two different surfactants of slightly different sizes, and characterized. The irreversible capacity loss that occurs during the first discharge and charge cycle is 890 mAh g(-1), which is smaller than the 1,010-mAh g(-1) loss recorded for mesoporous SnO2 (abbreviated S-SnO2) synthesized using a single surfactant. After 50 cycles, the discharge capacity of M-SnO2 (504 mAh g(-1)) is higher than that of S-SnO2 (401 mAh g(-1)) and solid nanoparticles of SnO2 (abbreviated nano-SnO2 < 4 mAh g(-1)) and nano-SnO2. Transmission electron microscopy revealed higher disorder in the pore arrangement in M-SnO2. This, in turn imparts lower stiffness to M-SnO2 (elastic modulus, E (R) a parts per thousand aEuro parts per thousand 14.5 GPa) vis-a-vis S-SnO2 (E (R) a parts per thousand aEuro parts per thousand 20.5 GPa), as obtained using the nanoindentation technique. Thus, the superior battery performance of M-SnO2 is attributed to its intrinsic material mechanical property. The fluidity of the internal microstructure of M-SnO2 resulted in a lower degree of aggregation of Sn particles compared to S-SnO2 and nano-SnO2 structural stabilization and long-term cyclability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In situ powder X-ray diffraction (XRD) studies on 3D micro-crystalline tin (II) sulfide (SnS) were carried out at different temperatures. While increasing temperature, the crystal structure of SnS remains stable as orthorhombic, whereas its lattice parameters and unit-cell volume are considerably varied. Further, these 3D micro-crystalline structures have showed a negative thermal expansion along the a-axis and positive expansion along the b- and c-axes. However, the overall drop along the a-axis of SnS crystals is nearly equal to their expansion along the c-axis. The observed changes in the structural properties of SnS micro-crystallites with temperature are discussed and reported.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on the novel flow sensing application of piezoelectric ZnO thin film deposited on Phynox alloy sensing element. Characterization of piezoelectric ZnO films deposited on Phynox (Elgiloy) substrate at different RF powers is discussed. ZnO films deposited at RF power of 100W were found to have fine c-axis orientation, possesses excellent surface morphology with lower rms surface roughness of 1.87 nm and maximum d(31) coefficient value 4.7 pm V-1. The thin cantilever strip of Phynox alloy with ZnO film as a sensing layer for flow sensing has been tested for flow rates ranging from 2 to 18 L min(-1). A detailed theoretical analysis of the experimental set-up showing the relationship between output voltage and force at a particular flow rate has been discussed. The sensitivity of now sensing element is similar to 18 mV/(L min(-1)) and typical response time is of the order of 20 m s. The sensing element is calibrated using in-house developed testing set-up. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nano-indentation studies have been undertaken on bulk Ge15Te85-xSix glasses (0 <= x <= 9), to estimate hardness, H and elastic modulus, E. It is found that E and H increase initially with the increase in the atomic percent of Si. Further, a plateau is seen in the composition dependence of E and H in the composition range 2 <= x <= 6. It is also seen that the addition of up to 2 at% Si increases the density rho of the glass considerably; however, further additions of Si lead to a near linear reduction in rho, in the range 2 <= x <= 6. Beyond x=6, rho increases again with Si content. The variation of molar volume V-m brings out a more fascinating picture. A plateau is seen in the intermediate phase suggesting that the molecular structure of the glasses is adapting to keep the count of constraints fixed in this particular phase. The observed variations in mechanical properties are associated with the Boolchand's intermediate phase in the present glassy system, in the composition range 2 <= x <= 6, suggested earlier from calorimetric and electrical switching studies. The present results reveal rather directly the existence of the intermediate phase in elastic and plastic properties of chalcogenide glasses. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose an iterative data reconstruction technique specifically designed for multi-dimensional multi-color fluorescence imaging. Markov random field is employed (for modeling the multi-color image field) in conjunction with the classical maximum likelihood method. It is noted that, ill-posed nature of the inverse problem associated with multi-color fluorescence imaging forces iterative data reconstruction. Reconstruction of three-dimensional (3D) two-color images (obtained from nanobeads and cultured cell samples) show significant reduction in the background noise (improved signal-to-noise ratio) with an impressive overall improvement in the spatial resolution (approximate to 250 nm) of the imaging system. Proposed data reconstruction technique may find immediate application in 3D in vivo and in vitro multi-color fluorescence imaging of biological specimens. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4769058]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Surface electrodes are essentially required to be switched for boundary data collection in electrical impedance tomography (Ell). Parallel digital data bits are required to operate the multiplexers used, generally, for electrode switching in ELT. More the electrodes in an EIT system more the digital data bits are needed. For a sixteen electrode system. 16 parallel digital data bits are required to operate the multiplexers in opposite or neighbouring current injection method. In this paper a common ground current injection is proposed for EIT and the resistivity imaging is studied. Common ground method needs only two analog multiplexers each of which need only 4 digital data bits and hence only 8 digital bits are required to switch the 16 surface electrodes. Results show that the USB based data acquisition system sequentially generate digital data required for multiplexers operating in common ground current injection method. The profile of the boundary data collected from practical phantom show that the multiplexers are operating in the required sequence in common ground current injection protocol. The voltage peaks obtained for all the inhomogeneity configurations are found at the accurate positions in the boundary data matrix which proved the sequential operation of multiplexers. Resistivity images reconstructed from the boundary data collected from the practical phantom with different configurations also show that the entire digital data generation module is functioning properly. Reconstructed images and their image parameters proved that the boundary data are successfully acquired by the DAQ system which in turn indicates a sequential and proper operation of multiplexers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Surface electrode switching of 16-electrode wireless EIT is studied using a Radio Frequency (RF) based digital data transmission technique operating with 8 channel encoder/decoder ICs. An electrode switching module is developed the analog multiplexers and switched with 8-bit parallel digital data transferred by transmitter/receiver module developed with radio frequency technology. 8-bit parallel digital data collected from the receiver module are converted to 16-bit digital data by using binary adder circuits and then used for switching the electrodes in opposite current injection protocol. 8-bit parallel digital data are generated using NI USB 6251 DAQ card in LabVIEW software and sent to the transmission module which transmits the digital data bits to the receiver end. Receiver module supplies the parallel digital bits to the binary adder circuits and adder circuit outputs are fed to the multiplexers of the electrode switching module for surface electrode switching. 1 mA, 50 kHz sinusoidal constant current is injected at the phantom boundary using opposite current injection protocol. The boundary potentials developed at the voltage electrodes are measured and studied to assess the wireless data transmission.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The solution of the forward equation that models the transport of light through a highly scattering tissue material in diffuse optical tomography (DOT) using the finite element method gives flux density (Phi) at the nodal points of the mesh. The experimentally measured flux (U-measured) on the boundary over a finite surface area in a DOT system has to be corrected to account for the system transfer functions (R) of various building blocks of the measurement system. We present two methods to compensate for the perturbations caused by R and estimate true flux density (Phi) from U-measured(cal). In the first approach, the measurement data with a homogeneous phantom (U-measured(homo)) is used to calibrate the measurement system. The second scheme estimates the homogeneous phantom measurement using only the measurement from a heterogeneous phantom, thereby eliminating the necessity of a homogeneous phantom. This is done by statistically averaging the data (U-measured(hetero)) and redistributing it to the corresponding detector positions. The experiments carried out on tissue mimicking phantom with single and multiple inhomogeneities, human hand, and a pork tissue phantom demonstrate the robustness of the approach. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) DOI: 10.1117/1.JBO.18.2.026023]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study, the effect of iodine concentration on the photovoltaic properties of dye sensitized solar cells (DSSC) based on TiO2 nanoparticles for three different ratios of lithium iodide (LiI) and iodine (I-2) has been investigated. The electron transport properties and interfacial recombination kinetics have been evaluated by electrochemical impedance spectroscopy (EIS). It is found that increasing the concentration of lithium iodide for all ratios of iodine and lithium iodide decreases the open-circuit voltage (V-oc) whereas short circuit current density (J(sc)) and fill factor (FF) shows improvement. The reduction in V-oc and increment in J(sc) is ascribed to the higher concentration of absorptive Li+ cations which shifts the conduction band edge of TiO2 positively. The increase in FF is due to the reduction in electron transport resistance (R-omega) of the cell. In addition for all the ratios of LiI/I-2 increasing the concentration of I-2 decreases the V-oc which is attributed to the increased recombination with tri-iodide ions (I-3(-)) as verified from the low recombination resistance (R-k) and electron lifetime (tau) values obtained by EIS analysis. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we will be presenting the effect of fluidic gap, the effect of change of refractive index of the fluid contained in the gap, and the effect of higher order modes on the efficiency of light coupling and thus on the on the sensitivity of the sensor.