905 resultados para Incomplete Block-designs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The idea of balancing the resources spent in the acquisition and encoding of natural signals strictly to their intrinsic information content has interested nearly a decade of research under the name of compressed sensing. In this doctoral dissertation we develop some extensions and improvements upon this technique's foundations, by modifying the random sensing matrices on which the signals of interest are projected to achieve different objectives. Firstly, we propose two methods for the adaptation of sensing matrix ensembles to the second-order moments of natural signals. These techniques leverage the maximisation of different proxies for the quantity of information acquired by compressed sensing, and are efficiently applied in the encoding of electrocardiographic tracks with minimum-complexity digital hardware. Secondly, we focus on the possibility of using compressed sensing as a method to provide a partial, yet cryptanalysis-resistant form of encryption; in this context, we show how a random matrix generation strategy with a controlled amount of perturbations can be used to distinguish between multiple user classes with different quality of access to the encrypted information content. Finally, we explore the application of compressed sensing in the design of a multispectral imager, by implementing an optical scheme that entails a coded aperture array and Fabry-Pérot spectral filters. The signal recoveries obtained by processing real-world measurements show promising results, that leave room for an improvement of the sensing matrix calibration problem in the devised imager.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data deduplication describes a class of approaches that reduce the storage capacity needed to store data or the amount of data that has to be transferred over a network. These approaches detect coarse-grained redundancies within a data set, e.g. a file system, and remove them.rnrnOne of the most important applications of data deduplication are backup storage systems where these approaches are able to reduce the storage requirements to a small fraction of the logical backup data size.rnThis thesis introduces multiple new extensions of so-called fingerprinting-based data deduplication. It starts with the presentation of a novel system design, which allows using a cluster of servers to perform exact data deduplication with small chunks in a scalable way.rnrnAfterwards, a combination of compression approaches for an important, but often over- looked, data structure in data deduplication systems, so called block and file recipes, is introduced. Using these compression approaches that exploit unique properties of data deduplication systems, the size of these recipes can be reduced by more than 92% in all investigated data sets. As file recipes can occupy a significant fraction of the overall storage capacity of data deduplication systems, the compression enables significant savings.rnrnA technique to increase the write throughput of data deduplication systems, based on the aforementioned block and file recipes, is introduced next. The novel Block Locality Caching (BLC) uses properties of block and file recipes to overcome the chunk lookup disk bottleneck of data deduplication systems. This chunk lookup disk bottleneck either limits the scalability or the throughput of data deduplication systems. The presented BLC overcomes the disk bottleneck more efficiently than existing approaches. Furthermore, it is shown that it is less prone to aging effects.rnrnFinally, it is investigated if large HPC storage systems inhibit redundancies that can be found by fingerprinting-based data deduplication. Over 3 PB of HPC storage data from different data sets have been analyzed. In most data sets, between 20 and 30% of the data can be classified as redundant. According to these results, future work in HPC storage systems should further investigate how data deduplication can be integrated into future HPC storage systems.rnrnThis thesis presents important novel work in different area of data deduplication re- search.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prologue of this thesis (Chapter 1.0) gives a general overview on lactone based poly(ester) chemistry with a focus on advanced synthetic strategies for ring-opening polymerization, including the emerging field of organo catalysis. This section is followed by a presentation of the state-of the art regarding the two central fields of the thesis: (i) polyfunctional and branched poly(ester)s in Chapter 1.1 as well as (ii) the development of new poly(ester) based block copolymers with functional methacrylates (Chapter 1.2). Chapter 2 deals with the synthesis of new, non-linear poly(ester) structures. In Chapter 2.1, the synthesis of poly(lactide)-based multiarm stars, prepared via a grafting-from method, is described. The hyperbranched poly(ether)-poly(ol) poly(glycerol) is employed as a hydrophilic core molecule. The resulting star block copolymers exhibit potential as phase transfer agents and can stabilize hydrophilic dyes in a hydrophobic environment. In Chapter 2.2, this approach is expanded to poly(glycolide) multiarm star polymers. The problem of the poor solubility of linear poly(glycolide)s in common organic solvents combined with an improvement of the thermal properties has been approached by the reduction of the total chain length. In Chapter 2.3, the first successful synthesis of hyperbranched poly(lactide)s is presented. The ring-opening, multibranching copolymerization of lactide with the “inimer” 5HDON (a hydroxyl-functional lactone monomer) was carefully examined. Besides a precise molecular characterization involving the determination of the degree of branching, we were able to put forward a reaction model for the formation of branching during polymerization. Several innovative approaches to amphiphilic poly(ester)/poly(methacrylate)-based block copolymers are presented in the third part of the thesis (Chapter 3). Block copolymer build-up especially relies on the combination of ring-opening and living radical polymerization. Atom transfer radical polymerization has been successfully combined with lactide ring-opening, using a “double headed” initiator. This strategy allowed for the realization of poly(lactide)-block-poly(2-hydroxyethyl methacrylate) copolymers, which represent promising materials for tissue engineering scaffolds with anti-fouling properties (Chapter 3.1). The two-step/one-pot approach forgoes the use of protecting groups for HEMA by a careful selection of the reaction conditions. A series of potentially biocompatible and partially biodegradable homo- and block copolymers is described in Chapter 3.2. In order to create a block copolymer with a comparably strong hydrophilic character, a new acetal-protected glycerol monomethacrylate monomer (cis-1,3- benzylidene glycerol methacrylate/BGMA) was designed. The hydrophobic poly(BGMA) could be readily transformed into the hydrophilic and water-soluble poly(iso-glycerol methacrylate) (PIGMA) by mild acidic hydrolysis. Block copolymers of PIGMA and poly(lactide) exhibited interesting spherical aggregates in aqueous environment which could be significantly influenced by variation of the poly(lactide)s stereo-structure. In Chapter 3.3, pH-sensitive poly(ethylene glycol)-b-PBGMA copolymers are described. At slightly acidic pH values (pH 4/37°C), they decompose due to a polarity change of the BGMA block caused by progressing acetal cleavage. This stimuli-responsive behavior renders the system highly attractive for the targeted delivery of anti-cancer drugs. In Chapter 3.4, which was realized in cooperation, the concept of biocompatible, amphiphilic poly(lactide) based polymer drug conjugates, was pursued. This was accomplished in the form of fluorescently labeled poly(HPMA)-b-poly(lactide) copolymers. Fluorescence correlation spectroscopy (FCS) of partially biodegradable block copolymer aggregates exhibited fast cellular uptake by human cervix adenocarcinoma cells without showing toxic effects in the examined concentration range (Chapter 4.1). The current state of further projects which will be pursued in future studies is addressed in Chapter 4. This covers the synthesis of biocompatible star block copolymers (Chapter 4.2) and the development of new methacrylate monomers for biomedical applications (Chapters 4.3 and 4.4). Finally, the further investigation of hydroxyl-functional lactones and carbonates which are promising candidates for the synthesis of new hydrophilic linear or hyperbranched biopolymers, is addressed in Chapter 4.5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis I present a new coarse-grained model suitable to investigate the phase behavior of rod-coil block copolymers on mesoscopic length scales. In this model the rods are represented by hard spherocylinders, whereas the coil block consists of interconnected beads. The interactions between the constituents are based on local densities. This facilitates an efficient Monte-Carlo sampling of the phase space. I verify the applicability of the model and the simulation approach by means of several examples. I treat pure rod systems and mixtures of rod and coil polymers. Then I append coils to the rods and investigate the role of the different model parameters. Furthermore, I compare different implementations of the model. I prove the capability of the rod-coil block copolymers in our model to exhibit typical micro-phase separated configurations as well as extraordinary phases, such as the wavy lamellar state, percolating structuresrnand clusters. Additionally, I demonstrate the metastability of the observed zigzag phase in our model. A central point of this thesis is the examination of the phase behavior of the rod-coil block copolymers in dependence of different chain lengths and interaction strengths between rods and coil. The observations of these studies are summarized in a phase diagram for rod-coil block copolymers. Furthermore, I validate a stabilization of the smectic phase with increasing coil fraction.rnIn the second part of this work I present a side project in which I derive a model permitting the simulation of tetrapods with and without grafted semiconducting block copolymers. The effect of these polymers is added in an implicit manner by effective interactions between the tetrapods. While the depletion interaction is described in an approximate manner within the Asakura-Oosawa model, the free energy penalty for the brush compression is calculated within the Alexander-de Gennes model. Recent experiments with CdSe tetrapods show that grafted tetrapods are clearly much better dispersed in the polymer matrix than bare tetrapods. My simulations confirm that bare tetrapods tend to aggregate in the matrix of excess polymers, while clustering is significantly reduced after grafting polymer chains to the tetrapods. Finally, I propose a possible extension enabling the simulation of a system with fluctuating volume and demonstrate its basic functionality. This study is originated in a cooperation with an experimental group with the goal to analyze the morphology of these systems in order to find the ideal morphology for hybrid solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Random access (RA) protocols are normally used in a satellite networks for initial terminal access and are particularly effective since no coordination is required. On the other hand, contention resolution diversity slotted Aloha (CRDSA), irregular repetition slotted Aloha (IRSA) and coded slotted Aloha (CSA) has shown to be more efficient than classic RA schemes as slotted Aloha, and can be exploited also when short packets transmissions are done over a shared medium. In particular, they relies on burst repetition and on successive interference cancellation (SIC) applied at the receiver. The SIC process can be well described using a bipartite graph representation and exploiting tools used for analyze iterative decoding. The scope of my Master Thesis has been to described the performance of such RA protocols when the Rayleigh fading is taken into account. In this context, each user has the ability to correctly decode a packet also in presence of collision and when SIC is considered this may result in multi-packet reception. Analysis of the SIC procedure under Rayleigh fading has been analytically derived for the asymptotic case (infinite frame length), helping the analysis of both throughput and packet loss rates. An upper bound of the achievable performance has been analytically obtained. It can be show that in particular channel conditions the throughput of the system can be greater than one packets per slot which is the theoretical limit of the Collision Channel case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Performing spermatic cord block for scrotal surgery avoids the potential risks of neuraxial and general anaesthesia and provides long-lasting postoperative analgesia. A blindly performed block is often inefficient and bears its own potential risks (intravascular injection of local anaesthetics, haematoma formation and perforation of the deferent duct). The use of ultrasound may help to overcome these disadvantages. The aim of this study was to test the feasibility and monitor the success rate of a new ultrasound-guided spermatic cord block.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attempting to achieve the high diversity of training goals in modern competitive alpine skiing simultaneously can be difficult and may lead to compromised overall adaptation. Therefore, we investigated the effect of block training periodization on maximal oxygen consumption (VO2max) and parameters of exercise performance in elite junior alpine skiers. Six female and 15 male athletes were assigned to high-intensity interval (IT, N = 13) or control training groups (CT, N = 8). IT performed 15 high-intensity aerobic interval (HIT) sessions in 11 days. Sessions were 4 x 4 min at 90-95% of maximal heart rate separated by 3-min recovery periods. CT continued their conventionally mixed training, containing endurance and strength sessions. Before and 7 days after training, subjects performed a ramp incremental test followed by a high-intensity time-to-exhaustion (tlim) test both on a cycle ergometer, a 90-s high-box jump test as well as countermovement (CMJ) and squat jumps (SJ) on a force plate. IT significantly improved relative VO2max by 6.0% (P < 0.01; male +7.5%, female +2.1%), relative peak power output by 5.5% (P < 0.01) and power output at ventilatory threshold 2 by 9.6% (P < 0.01). No changes occurred for these measures in CT. tlim remained unchanged in both groups. High-box jump performance was significantly improved in males of IT only (4.9%, P < 0.05). Jump peak power (CMJ -4.8%, SJ -4.1%; P < 0.01), but not height decreased in IT only. For competitive alpine skiers, block periodization of HIT offers a promising way to efficiently improve VO2max and performance. Compromised explosive jump performance might be associated with persisting muscle fatigue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proper sample size estimation is an important part of clinical trial methodology and closely related to the precision and power of the trial's results. Trials with sufficient sample sizes are scientifically and ethically justified and more credible compared with trials with insufficient sizes. Planning clinical trials with inadequate sample sizes might be considered as a waste of time and resources, as well as unethical, since patients might be enrolled in a study in which the expected results will not be trusted and are unlikely to have an impact on clinical practice. Because of the low emphasis of sample size calculation in clinical trials in orthodontics, it is the objective of this article to introduce the orthodontic clinician to the importance and the general principles of sample size calculations for randomized controlled trials to serve as guidance for study designs and as a tool for quality assessment when reviewing published clinical trials in our specialty. Examples of calculations are shown for 2-arm parallel trials applicable to orthodontics. The working examples are analyzed, and the implications of design or inherent complexities in each category are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the novel synthesis of two sugar units that are central intermediates for the formation of members of the bicyclo-DNA and -RNA family. The synthesis starts from commercially available 1,2: 5,6-di-O-isopropylidene-alpha-D-glucofuranose. The key step involves the elaboration of a carbocyclic ring in a furanoside by rhodium(I)-catalyzed hydroacylation. Via this pathway, one of the sugar units is available in 8 steps and in an overall yield of 27%, while its deoxy derivative is obtained in 11 steps, which is 5 steps fewer than in our previous synthesis of this compound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about the learning of the skills needed to perform ultrasound- or nerve stimulator-guided peripheral nerve blocks. The aim of this study was to compare the learning curves of residents trained in ultrasound guidance versus residents trained in nerve stimulation for axillary brachial plexus block. Ten residents with no previous experience with using ultrasound received ultrasound training and another ten residents with no previous experience with using nerve stimulation received nerve stimulation training. The novices' learning curves were generated by retrospective data analysis out of our electronic anaesthesia database. Individual success rates were pooled, and the institutional learning curve was calculated using a bootstrapping technique in combination with a Monte Carlo simulation procedure. The skills required to perform successful ultrasound-guided axillary brachial plexus block can be learnt faster and lead to a higher final success rate compared to nerve stimulator-guided axillary brachial plexus block.