878 resultados para INSPIRATORY MUSCLE TRAINING
Resumo:
Dias RG, Alves MJ, Pereira AC, Rondon MU, dos Santos MR, Krieger JE, Krieger MH, Negrao CE. Glu298Asp eNOS gene polymorphism causes attenuation in nonexercising muscle vasodilatation. Physiol Genomics 37: 99-107, 2009. First published January 21, 2009; doi:10.1152/physiolgenomics.90368.2008.-The influence of Glu298Asp endothelial nitric oxide synthase (eNOS) polymorphism in exercise-induced reflex muscle vasodilatation is unknown. We hypothesized that nonexercising forearm blood flow (FBF) responses during handgrip isometric exercise would be attenuated in individuals carrying the Asp298 allele. In addition, these responses would be mediated by reduced eNOS function and NO-mediated vasodilatation or sympathetic vasoconstriction. From 287 volunteers previously genotyped, we selected 33 healthy individuals to represent three genotypes: Glu/Glu [n = 15, age 43 +/- 3 yr, body mass index (BMI) 22.9 +/- 0.3 kg/m(2)], Glu/Asp (n = 9, age 41 +/- 3 yr, BMI 23.7 +/- 1.0 kg/m(2)), and Asp/Asp (n = 9, age 40 +/- 4 yr, BMI 23.5 +/- 0.9 kg/m(2)). Heart rate (HR), mean blood pressure (MBP), and FBF (plethysmography) were recorded for 3 min at baseline and 3 min during isometric handgrip exercise. Baseline HR, MBP, FBF, and forearm vascular conductance (FVC) were similar among genotypes. FVC responses to exercise were significantly lower in Asp/Asp when compared with Glu/Asp and Glu/Glu (Delta = 0.07 +/- 0.14 vs. 0.64 +/- 0.20 and 0.57 +/- 0.09 units, respectively; P = 0.002). Further studies showed that intra-arterial infusion of N(G)-monomethyl-L-arginine (L-NMMA) did not change FVC responses to exercise in Asp/Asp, but significantly reduced FVC in Glu/Glu (Delta = 0.79 +/- 0.14 vs. 0.14 +/- 0.09 units). Thus the differences between Glu/Glu and Asp/Asp were no longer observed (P = 0.62). L-NMMA + phentolamine increased similarly FVC responses to exercise in Glu/Glu and Asp/Asp (P = 0.43). MBP and muscle sympathetic nerve activity increased significant and similarly throughout experimental protocols in Glu/Glu and Asp/Asp. Individuals who are homozygous for the Asp298 allele of the eNOS enzyme have attenuated nonexercising muscle vasodilatation in response to exercise. This genotype difference is due to reduced eNOS function and NO-mediated vasodilatation, but not sympathetic vasoconstriction.
Resumo:
Resistance training is accompanied by cardiac hypertrophy, but the role of the renin-angiotensin system (RAS) in this response is elusive. We evaluated this question in 36 male Wistar rats divided into six groups: control (n = 6); trained (n = 6); control + losartan (10 mg.kg(-1).day(-1), n = 6); trained + losartan (n = 6); control + high-salt diet (1%, n = 6); and trained + high-salt diet (1%, n = 6). High salt was used to inhibit the systemic RAS and losartan to block the AT(1) receptor. The exercise protocol consisted of: 4 x 12 bouts, 5x/wk during 8 wk, with 65-75% of one repetition maximum. Left ventricle weight-to-body weight ratio increased only in trained and trained + high-salt diet groups (8.5% and 10.6%, P < 0.05) compared with control. Also, none of the pathological cardiac hypertrophy markers, atrial natriuretic peptide, and alpha MHC (alpha-myosin heavy chain)-to-beta MHC ratio, were changed. ACE activity was analyzed by fluorometric assay (systemic and cardiac) and plasma renin activity (PRA) by RIA and remained unchanged upon resistance training, whereas PRA decreased significantly with the high-salt diet. Interestingly, using Western blot analysis and RT-PRC, no changes were observed in cardiac AT(2) receptor levels, whereas the AT(1) receptor gene (56%, P < 0.05) and protein (31%, P < 0.05) expressions were upregulated in the trained group. Also, cardiac ANG II concentration evaluated by ELISA remained unchanged (23.27 +/- 2.4 vs. 22.01 +/- 0.8 pg/mg, P > 0.05). Administration of a subhypotensive dose of losartan prevented left ventricle hypertrophy in response to the resistance training. Altogether, we provide evidence that resistance training-induced cardiac hypertrophy is accompanied by induction of AT(1) receptor expression with no changes in cardiac ANG II, which suggests a local activation of the RAS consistent with the hypertrophic response.
Resumo:
Background and objective: Hyperinflation with a decrease in inspiratory capacity (IC) is a common presentation for both unstable and stable COPD patients. As CPAP can reduce inspiratory load, possibly secondary to a reduction in hyperinflation, this study examined whether CPAP would increase IC in stable COPD patients. Methods: Twenty-one stable COPD patients (nine emphysema, 12 chronic bronchitis) received a trial of CPAP for 5 min at 4, 7 and 11 cmH(2)O. Fast and slow VC (SVC) were measured before and after each CPAP trial. In patients in whom all three CPAP levels resulted in a decreased IC, an additional trial of CPAP at 2 cmH(2)O was conducted. For each patient, a `best CPAP` level was defined as the one associated with the greatest IC. This pressure was then applied for an additional 10 min followed by spirometry. Results: Following application of the `best CPAP`, the IC and SVC increased in 15 patients (nine emphysema, six chronic bronchitis). The mean change in IC was 159 mL (95% CI: 80-237 mL) and the mean change in SVC was 240 mL (95% CI: 97-386 mL). Among these patients, those with emphysema demonstrated a mean increase in IC of 216 mL (95% CI: 94-337 mL). Six patients (all with chronic bronchitis) did not demonstrate any improvement in IC. Conclusions: The best individualized CPAP can increase inspiratory capacity in patients with stable COPD, especially in those with emphysema.
Resumo:
This study examined the impact of computer and assistive device use on the employment status and vocational modes of people with physical disabilities in Australia. A survey was distributed to people over 15 years in age with physical disabilities living in the Brisbane area. Responses were received from 82 people, including those with spinal cord injuries, cerebral palsy and muscular dystrophy. Of respondents 46 were employed, 22 were unemployed, and 12 were either students or undertaking voluntary work. Three-quarters of respondents used a computer in their occupations, while 15 used assistive devices. Using logistic regression analysis it was found that gender, education, level of computer skill and computer training were significant predictors of employment outcomes. Neither the age of respondent nor use of assistive software were significant predictors. From information obtained in this study guidelines for a training programme designed to maximize the employability of people with physical disabilities were developed.
Resumo:
Background: Asthma symptoms reduce patients daily activities, impair their health-related quality of life (HRQoL), and increase their reports of anxiety and depress, all of which seem to be related to a decrease in asthma control. Aerobic exercise training is known to improve aerobic fitness and reduce dyspnea in asthmatics; however, its effect in reducing psychologic distress and symptoms remains poorly understood. We evaluated the role of an aerobic training program in improving HRQoL (primary aim) and reducing psychologic distress and asthma symptoms (secondary aims) for patients with moderate or severe persistent asthma. Methods: A total of 101 patients were randomly assigned to either a control group or an aerobic training group and studied during the period between medical consultations. Control group patients (educational program plus breathing exercises) (n = 51) and training group patients (educational program plus breathing exercises plus aerobic training) (n = 50) were followed twice a week during a 3-month period. HRQoL and levels of anxiety and depression were quantified before and after treatment. Asthma symptoms were evaluated monthly. Results: At 3 months, the domains (physical limitations, frequency of symptoms, and psychosocial) and total scores of HRQoL, significantly improved only in the training group patients (P < .001); the number of asthma-symptom-free days and anxiety and depression levels also significantly improved in this group (P < .001). In addition, a linear relationship between improvement in aerobic capacity and the days without asthma symptoms was observed (r = 0.47; P < .01). Conclusions: Our results suggest that aerobic training can play an important role in the clinical management of patients with persistent asthma. Further, they may be especially useful for patients with higher degrees of psychosocial distress.
Resumo:
We recently demonstrated that creatine supplementation increased some features of lung allergic sensitization in mice. On the other hand, other studies have shown that aerobic exercise inhibited allergic airway inflammation and remodeling. We hypothesized that aerobic exercise may decrease the exacerbatory effects of the creatine supplementation in a murine model of asthma. Balb/c mice were divided into six groups: Control, Creatine (Cr), Low Intensity Exercise + Creatine (Low + Cr), Ovalbumin (OVA), Ovalbumin + Creatine (OVA + Cr) and Ovalbumin + Creatine + Low Intensity Exercise (OVA + Cr + Low). OVA-sensitized groups were sensitized with OVA intraperitoneal injections (days 0, 14, 28, and 42). Aerosol challenge (OVA 1 %) and Cr treatment (0.5 g/kg/day) were initiated on Day 21 until Day 53. Low intensity exercise began on day 22 and was sustained until day 50. Low intensity exercise in the presence of creatine supplementation in sensitized mice resulted in a decreased number of eosinophils in BALF (p < 0.001) and in the airways (P < 0.001), and a decreased density of inflammatory cells positive to IL-4 (p < 0.001) and IL-5 (p < 0.001), airway collagen (p < 0.001) and elastic fibers (p < 0.001) content, airway smooth muscle thickness (p < 0.001) and bronchoconstriction index (p < 0.05) when compared with OVA + Cr group. These results suggest that aerobic exercise reduces the exacerbatory effects of creatine supplementation in chronically sensitized mice.
Resumo:
Vieira RP, de Andrade VF, Duarte AC, dos Santos AB, Mauad T, Martins MA, Dolhnikoff M, Carvalho CR. Aerobic conditioning and allergic pulmonary inflammation in mice. II. Effects on lung vascular and parenchymal inflammation and remodeling. Am J Physiol Lung Cell Mol Physiol 295: L670-L679, 2008. First published August 29, 2008; doi: 10.1152/ajplung.00465.2007.-Recent evidence suggests that asthma leads to inflammation and remodeling not only in the airways but also in pulmonary vessels and parenchyma. In addition, some studies demonstrated that aerobic training decreases chronic allergic inflammation in the airways; however, its effects on the pulmonary vessels and parenchyma have not been previously evaluated. Our objective was to test the hypothesis that aerobic conditioning reduces inflammation and remodeling in pulmonary vessels and parenchyma in a model of chronic allergic lung inflammation. Balb/c mice were sensitized at days 0, 14, 28, and 42 and challenged with ovalbumin ( OVA) from day 21 to day 50. Aerobic training started on day 21 and continued until day 50. Pulmonary vessel and parenchyma inflammation and remodeling were evaluated by quantitative analysis of eosinophils and mononuclear cells and by collagen and elastin contents and smooth muscle thickness. Immunohistochemistry was performed to quantify the density of positive cells to interleukin (IL)-2, IL-4, IL-5, interferon-gamma, IL-10, monocyte chemotatic protein (MCP)-1, nuclear factor (NF)-kappa B p65, and insulin-like growth factor (IGF)-I. OVA exposure induced pulmonary blood vessels and parenchyma inflammation as well as increased expression of IL-4, IL-5, MCP-1, NF-kappa B p65, and IGF-I by inflammatory cells were reduced by aerobic conditioning. OVA exposure also induced an increase in smooth muscle thickness and elastic and collagen contents in pulmonary vessels, which were reduced by aerobic conditioning. Aerobic conditioning increased the expression of IL-10 in sensitized mice. We conclude that aerobic conditioning decreases pulmonary vascular and parenchymal inflammation and remodeling in this experimental model of chronic allergic lung inflammation in mice.
Resumo:
MENDES, F. A. R., F. M. ALMEIDA, A. CUKIER, R. STELMACH, W. JACOB-FILHO, M. A. MARTINS, and C. R. F. CARVALHO. Effects of Aerobic Training on Airway Inflammation in Asthmatic Patients. Med. Sci. Sports Exerc., Vol. 43, No. 2, pp. 197-203, 2011. Purpose: There is evidence suggesting that physical activity has anti-inflammatory effects in many chronic diseases; however, the role of exercise in airway inflammation in asthma is poorly understood. We aimed to evaluate the effects of an aerobic training program on eosinophil inflammation (primary aim) and nitric oxide (secondary aim) in patients with moderate or severe persistent asthma. Methods: Sixty-eight patients randomly assigned to either control (CG) or aerobic training (TG) groups were studied during the period between medical consultations. Patients in the CG (educational program + breathing exercises; N = 34) and TG (educational program + breathing exercises + aerobic training; N = 34) were examined twice a week during a 3-month period. Before and after the intervention, patients underwent induced sputum, fractional exhaled nitric oxide (FeNO), pulmonary function, and cardiopulmonary exercise testing. Asthma symptom-free days were quantified monthly, and asthma exacerbation was monitored during 3 months of intervention. Results: At 3 months, decreases in the total and eosinophil cell counts in induced sputum (P = 0.004) and in the levels of FeNO (P = 0.009) were observed after intervention only in the TG. The number of asthma symptom-free days and (V) over dotO(2max) also significantly improved (P < 0.001), and lower asthma exacerbation occurred in the TG (P < 0.01). In addition, the TG presented a strong positive relationship between baseline FeNO and eosinophil counts as well as their improvement after training (r = 0.77 and r = 0.9, respectively). Conclusions: Aerobic training reduces sputum eosinophil and FeNO in patients with moderate or severe asthma, and these benefits were more significant in subjects with higher levels of inflammation. These results suggest that aerobic training might be useful as an adjuvant therapy in asthmatic patients under optimized medical treatment.
Resumo:
We have previously shown that human leukaemia inhibitory factor (hLIF) inhibits perivascular cuff-induced neointimal formation in the rabbit carotid artery. Since nitric oxide (NO) is a known inhibitor of smooth muscle growth, NO synthase (NOS) activity in the presence of hLIF was examined in vivo and in vitro. In rabbit aortic smooth muscle cell (SMC) culture, significant NOS activity was observed at 50 pg/ml hLIF, with maximal activity at 5 ng/ml. In the presence of the NOS inhibitor L-NAME, hLIF-induced activation of NOS was greatly decreased, however it was still 63-fold higher than in control (p < 0.05). SMC-DNA synthesis was significantly reduced (-47%) following incubation with hLIF plus L-arginine, the substrate required for NO production (p < 0.05), with no effect observed in the absence of L-arginine. Silastic cuff placement over the right carotid artery of rabbits resulted in a neointima 19.3 +/- 5.4% of total wall cross-sectional area, which was increased in the presence of L-NAME (27.0 +/- 2.0%; p < 0.05) and reduced in the presence of L-arginine (11.3 +/- 2.0%; p < 0.05). The effect of L-arginine was ameliorated by co-administration of L-NAME (16.4 +/- 1.5%). However, administration of L-NAME with hLIF had no effect on the potent inhibition of neointimal formation by hLIF (3.2 +/- 2.5 vs. 2.1 +/- 5.4%, respectively). Similarly, with hLIF administration, NOS activity in the cuffed carotid increased to 269.0 +/- 14.0% of saline-treated controls and remained significantly higher with coadministration of L-NAME (188.5 +/- 14.7%). These results indicate that hLIF causes superinduction of NO by SMC, and that it is, either partially or wholly, through this mechanism that hLIF is a potent inhibitor of neointimal formation in vivo and of smooth muscle proliferation in vitro.
Resumo:
1. Mechanically skinned fibres from skeletal muscles of the rat, toad and yabby were used to investigate the effect of saponin treatment on sarcoplasmic reticulum (SR) Ca2+ loading properties. The SR was loaded submaximally under control conditions before and after treatment with saponin and SR Ca2+ was released with caffeine. 2. Treatment with 10 mu g ml(-1) saponin greatly reduced the SR Ca2+ loading ability of skinned fibres from the extensor digitorum longus muscle of the rat with a rate constant of 0.24 min(-1). Saponin concentrations up to 150 mu g ml(-1) and increased exposure time up to 30 min did not further reduce the SR Ca2+ loading ability of the SR, which indicates that the inhibitory action of 10-150 mu g ml(-1) saponin is not dose dependent. The effect of saponin was also not dependent on the state of polarization of the transverse-tubular system. 3. Treatment with saponin at concentrations up to 100 mu g ml(-1) for 30 min did not affect the Ca2+ loading ability of SR in skinned skeletal muscle fibres from the twitch portion of the toad iliofibularis muscle but SR Ca2+ loading ability decreased markedly with a time constant of 0.22 min(-1) in the presence of 150 mu g ml(-1) saponin. 4. The saponin dependent increase in permeability could be reversed in both rat and toad fibres by short treatment with 6 mu M Ruthenium Red, a potent SR Ca2+ channel blocker, suggesting that saponin does affect the SR Ca2+ channel properties in mammalian and anuran skeletal muscle. 5. Treatment of skinned fibres of long sarcomere length (> 6 mu m) from the claw muscle of the yabby (a freshwater decapod crustacean) with 10 mu g ml(-1) saponin for 30 min abolished the ability of the SR to load Ca2+, indicating that saponin affects differently the SR from skeletal muscles of mammals, anurans and crustaceans. 6. is concluded that at relatively low concentrations, saponin causes inhibition of the skeletal SR Ca2+ loading ability in a species dependent manner, probably by increasing the Ca2+ loss through SR Ca2+ release channels.
Resumo:
It is known that physical activity triggers changes in the central nervous system Adult rats, trained on treadmills for 4 weeks, and a group of sedentary rats was submitted to contuse moderate spinal cord injury A group of sedentary rats was submitted to a sham operation The trained group continued running on treadmill after lesion for 4 weeks Motor behavior evaluated by BBB score was smaller in the sedentary group compared to the trained rats by 7 days after lesion Computerized activity monitor showed clear-cut differences in spontaneous motor parameters in trained rats only before lesion After surgery, sedentary rats showed changes in motor parameters but not in later periods of analysis Animals were euthanized by 28 days after surgery, and their spinal cords were processed for Nissl staining and immunohistochemistry The number of the remaining neurons and the lesion areal and lesion volume fractions were obtained by stereological method The number of the remaining neurons did not change after training Lesion volume and lesion areal fraction per section were smaller in the trained group Lesion index was more pronounced in the sedentary group Microdensitometric image analysis demonstrated a microglial reaction, astroglial activation, and glial FGF-2 production more pronounced in the spinal cord of sedentary animals GAP-43 was higher in caudal levels of contusion in the sedentary group In conclusion, treadmill running may favor a better functional recovery in the acute period after spinal cord lesion and wound repair processes leading to neuroprotection (C) 2010 Elsevier B V All rights reserved
Resumo:
Objective To assess MHC I and II expressions in muscle fibres of juvenile dermatomyositis (JDM) and compare with the expression in polymyositis (PM), dermatomyositis (DM) and dystrophy. Patients and methods Forty-eight JDM patients and 17 controls (8 PM, 5 DM and 4 dystrophy) were studied. The mean age at disease onset was 7.1 +/- 3.0 years and the mean duration of weakness before biopsy was 9.4 +/- 12.9 months. Routine histochemistry and immunohistochemistry (StreptABComplex/HRP) for MHC I and II (Dakopatts) were performed on serial frozen muscle sections in all patients. Mann-Whitney, Kruskal Wallis, chi-square and Fisher`s exact statistical methods were used. Results MHC I expression was positive in 47 (97.9%) JDM cases. This expression was observed independent of time of disease corticotherapy previous to muscle biopsy and to the grading of inflammation observed in clinical, laboratorial and histological parameters. The expression of MHC I was similar on JDM, PM and DM, and lower in dystrophy. On the other hand, MHC II expression was positive in just 28.2% of JDM cases was correlated to histological features as inflammatory infiltrate, increased connective tissue and VAS for global degree of abnormality (p < 0.05). MCH II expression was similar in DM/PM and lower in JDM and dystrophy, and it was based on the frequency of positive staining rather than to the degree of the MCH II expression. Conclusions MHC I expression in muscle fibres is a premature and late marker of JDM patient independent to corticotherapy, and MHC II expression was lower in JDM than in PM and DM.
Resumo:
Objective To study increases in electromyographic (EMG) response from the right and left rectus femoris muscles of individuals with long-term cervical spinal cord injuries after EMG biofeedback treatment. Design Repeated measure trials compared EMG responses before and after biofeedback treatment in patients with spinal cord injuries. Main outcome measures The Neuroeducator was used to analyse and provide feedback of the EMG signal and to measure EMG response. Setting Department of Traumatic Orthopaedics, School of Medicine, University of Sao Paulo, Brazil. Participants Twenty subjects (three men and 17 women), between 21 and 49 years of age, with incomplete spinal cord injury at level C6 or higher (range C2 to C6). Of these subjects, 10 received their spinal cord injuries from motor vehicle accidents, one from a gunshot, five from diving, three from falls and one from spinal disc herniation. Results Significant differences were found in the EMG response of the right rectus femoris muscle between pre-initial (T1), post-initial (T2) and additional (T3) biofeedback treatment with the subjects in a sitting position [mean (standard deviation) T1: 26 mu V (29); T2: 67 mu V (50); T3: 77 mu V (62)]. The mean differences and 95% confidence intervals for these comparisons were as follows: T1 to T2, -40.7 (-53.1 to -29.4); T2 to T3, -9.6 (-26.1 to 2.3). Similar differences were found for the left leg in a sitting position and for both legs in the sit-to-stand condition. Conclusions The EMG responses obtained in this study showed that treatment involving EMG biofeedback significantly increased voluntary EMG responses from right and left rectus femoris muscles in individuals with spinal cord injuries. (C) 2010 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Our purpose was to examine possible influences of age on resistance exercise (RE) intensity progression in men. Twenty-four men, divided in young sedentary (YS; n = 10; 25.9 +/- 3.7 years), older sedentary (OS; n = 7; 67.4 +/- 5.2 years), and older runners (OR; n = 7; 71.3 +/- 3.0 years), underwent a 2 times-a-week RE program for 13 weeks. Muscle strength was assessed before and after training by 1-repetition maximum test. RE workloads were recorded for each exercise session, and increases of 5-10% were made whenever adaptation occurred. Muscle strength improved similarly in all groups after RE (P < 0.001). Relative RE intensity progression was not significantly different between YS and OS, except for a greater increase in calf raise relative workload observed in YS (P < 0.05). In contrast, OR displayed greater relative workload increase in 7 and 6 exercises than YS and OS, respectively (P < 0.05). The RE was safe as no injuries or major muscle pain were observed in either group. These results suggest that healthy sedentary older men are capable to exercise and increase RE intensity in the same way as young men, while physically active older men are capable to increase RE intensity in greater way than sedentary young and older men.