875 resultados para Homoclinic loop
Resumo:
The tissue kallikreins are serine proteases encoded by highly conserved multigene families. The rodent kallikrein (KLK) families are particularly large, consisting of 13 26 genes clustered in one chromosomal locus. It has been recently recognised that the human KLK gene family is of a similar size (15 genes) with the identification of another 12 related genes (KLK4-KLK15) within and adjacent to the original human KLK locus (KLK1-3) on chromosome 19q13.4. The structural organisation and size of these new genes is similar to that of other KLK genes except for additional exons encoding 5 or 3 untranslated regions. Moreover, many of these genes have multiple mRNA transcripts, a trait not observed with rodent genes. Unlike all other kallikreins, the KLK4-KLK15 encoded proteases are less related (25–44%) and do not contain a conventional kallikrein loop. Clusters of genes exhibit high prostatic (KLK2-4, KLK15) or pancreatic (KLK6-13) expression, suggesting evolutionary conservation of elements conferring tissue specificity. These genes are also expressed, to varying degrees, in a wider range of tissues suggesting a functional involvement of these newer human kallikrein proteases in a diverse range of physiological processes.
Resumo:
For the last two decades heart disease has been the highest single cause of death for the human population. With an alarming number of patients requiring heart transplant, and donations not able to satisfy the demand, treatment looks to mechanical alternatives. Rotary Ventricular Assist Devices, VADs, are miniature pumps which can be implanted alongside the heart to assist its pumping function. These constant flow devices are smaller, more efficient and promise a longer operational life than more traditional pulsatile VADs. The development of rotary VADs has focused on single pumps assisting the left ventricle only to supply blood for the body. In many patients however, failure of both ventricles demands that an additional pulsatile device be used to support the failing right ventricle. This condition renders them hospital bound while they wait for an unlikely heart donation. Reported attempts to use two rotary pumps to support both ventricles concurrently have warned of inherent haemodynamic instability. Poor balancing of the pumps’ flow rates quickly leads to vascular congestion increasing the risk of oedema and ventricular ‘suckdown’ occluding the inlet to the pump. This thesis introduces a novel Bi-Ventricular Assist Device (BiVAD) configuration where the pump outputs are passively balanced by vascular pressure. The BiVAD consists of two rotary pumps straddling the mechanical passive controller. Fluctuations in vascular pressure induce small deflections within both pumps adjusting their outputs allowing them to maintain arterial pressure. To optimise the passive controller’s interaction with the circulation, the controller’s dynamic response is optimised with a spring, mass, damper arrangement. This two part study presents a comprehensive assessment of the prototype’s ‘viability’ as a support device. Its ‘viability’ was considered based on its sensitivity to pathogenic haemodynamics and the ability of the passive response to maintain healthy circulation. The first part of the study is an experimental investigation where a prototype device was designed and built, and then tested in a pulsatile mock circulation loop. The BiVAD was subjected to a range of haemodynamic imbalances as well as a dynamic analysis to assess the functionality of the mechanical damper. The second part introduces the development of a numerical program to simulate human circulation supported by the passively controlled BiVAD. Both investigations showed that the prototype was able to mimic the native baroreceptor response. Simulating hypertension, poor flow balancing and subsequent ventricular failure during BiVAD support allowed the passive controller’s response to be assessed. Triggered by the resulting pressure imbalance, the controller responded by passively adjusting the VAD outputs in order to maintain healthy arterial pressures. This baroreceptor-like response demonstrated the inherent stability of the auto regulating BiVAD prototype. Simulating pulmonary hypertension in the more observable numerical model, however, revealed a serious issue with the passive response. The subsequent decrease in venous return into the left heart went unnoticed by the passive controller. Meanwhile the coupled nature of the passive response not only decreased RVAD output to reduce pulmonary arterial pressure, but it also increased LVAD output. Consequently, the LVAD increased fluid evacuation from the left ventricle, LV, and so actually accelerated the onset of LV collapse. It was concluded that despite the inherently stable baroreceptor-like response of the passive controller, its lack of sensitivity to venous return made it unviable in its present configuration. The study revealed a number of other important findings. Perhaps the most significant was that the reduced pulse experienced during constant flow support unbalanced the ratio of effective resistances of both vascular circuits. Even during steady rotary support therefore, the resulting ventricle volume imbalance increased the likelihood of suckdown. Additionally, mechanical damping of the passive controller’s response successfully filtered out pressure fluctuations from residual ventricular function. Finally, the importance of recognising inertial contributions to blood flow in the atria and ventricles in a numerical simulation were highlighted. This thesis documents the first attempt to create a fully auto regulated rotary cardiac assist device. Initial results encourage development of an inlet configuration sensitive to low flow such as collapsible inlet cannulae. Combining this with the existing baroreceptor-like response of the passive controller will render a highly stable passively controlled BiVAD configuration. The prototype controller’s passive interaction with the vasculature is a significant step towards a highly stable new generation of artificial heart.
Resumo:
There is evidence that many heating, ventilating & air conditioning (HVAC) systems, installed in larger buildings, have more capacity than is ever required to keep the occupants comfortable. This paper explores the reasons why this can occur, by examining a typical brief/design/documentation process. Over-sized HVAC systems cost more to install and operate and may not be able to control thermal comfort as well as a “right-sized” system. These impacts are evaluated, where data exists. Finally, some suggestions are developed to minimise both the extent of, and the negative impacts of, HVAC system over-sizing, for example: • Challenge “rules of thumb” and/or brief requirements which may be out of date. • Conduct an accurate load estimate, using AIRAH design data, specific to project location, and then resist the temptation to apply “safety factors • Use a load estimation program that accounts for thermal storage and diversification of peak loads for each zone and air handling system. • Select chiller sizes and staged or variable speed pumps and fans to ensure good part load performance. • Allow for unknown future tenancies by designing flexibility into the system, not by over-sizing. For example, generous sizing of distribution pipework and ductwork will allow available capacity to be redistributed. • Provide an auxiliary tenant condenser water loop to handle high load areas. • Consider using an Integrated Design Process, build an integrated load and energy use simulation model and test different operational scenarios • Use comprehensive Life Cycle Cost analysis for selection of the most optimal design solutions. This paper is an interim report on the findings of CRC-CI project 2002-051-B, Right-Sizing HVAC Systems, which is due for completion in January 2006.
Resumo:
Research is often characterised as the search for new ideas and understanding. The language of this view privileges the cognitive and intellectual aspects of discovery. However, in the research process theoretical claims are usually evaluated in practice and, indeed, the observations and experiences of practical circumstances often lead to new research questions. This feedback loop between speculation and experimentation is fundamental to research in many disciplines, and is also appropriate for research in the creative arts. In this chapter we will examine how our creative desire for artistic expressivity results in interplay between actions and ideas that direct the development of techniques and approaches for our audio/visual live-coding activities.
Resumo:
Novice programmers have difficulty developing an algorithmic solution while simultaneously obeying the syntactic constraints of the target programming language. To see how students fare in algorithmic problem solving when not burdened by syntax, we conducted an experiment in which a large class of beginning programmers were required to write a solution to a computational problem in structured English, as if instructing a child, without reference to program code at all. The students produced an unexpectedly wide range of correct, and attempted, solutions, some of which had not occurred to their teachers. We also found that many common programming errors were evident in the natural language algorithms, including failure to ensure loop termination, hardwiring of solutions, failure to properly initialise the computation, and use of unnecessary temporary variables, suggesting that these mistakes are caused by inexperience at thinking algorithmically, rather than difficulties in expressing solutions as program code.
Resumo:
Technology platforms originally developed for tissue engineering applications produce valuable models that mimic three-dimensional (3D) tissue organization and function to enhance the understanding of cell/tissue function under normal and pathological situations. These models show that when replicating physiological and pathological conditions as closely as possible investigators are allowed to probe the basic mechanisms of morphogenesis, differentiation and cancer. Significant efforts investigating angiogenetic processes and factors in tumorigenesis are currently undertaken to establish ways of targeting angiogenesis in tumours. Anti-angiogenic agents have been accepted for clinical application as attractive targeted therapeutics for the treatment of cancer. Combining the areas of tumour angiogenesis, combination therapies and drug delivery systems is therefore closely related to the understanding of the basic principles that are applied in tissue engineering models. Studies with 3D model systems have repeatedly identified complex interacting roles of matrix stiffness and composition, integrins, growth factor receptors and signalling in development and cancer. These insights suggest that plasticity, regulation and suppression of these processes can provide strategies and therapeutic targets for future cancer therapies. The historical perspective of the fields of tissue engineering and controlled release of therapeutics, including inhibitors of angiogenesis in tumours is becoming clearly evident as a major future advance in merging these fields. New delivery systems are expected to greatly enhance the ability to deliver drugs locally and in therapeutic concentrations to relevant sites in living organisms. Investigating the phenomena of angiogenesis and anti-angiogenesis in 3D in vivo models such as the Arterio-Venous (AV) loop mode in a separated and isolated chamber within a living organism adds another significant horizon to this perspective and opens new modalities for translational research in this field.
Resumo:
In condition-based maintenance (CBM), effective diagnostics and prognostics are essential tools for maintenance engineers to identify imminent fault and to predict the remaining useful life before the components finally fail. This enables remedial actions to be taken in advance and reschedules production if necessary. This paper presents a technique for accurate assessment of the remnant life of machines based on historical failure knowledge embedded in the closed loop diagnostic and prognostic system. The technique uses the Support Vector Machine (SVM) classifier for both fault diagnosis and evaluation of health stages of machine degradation. To validate the feasibility of the proposed model, the five different level data of typical four faults from High Pressure Liquefied Natural Gas (HP-LNG) pumps were used for multi-class fault diagnosis. In addition, two sets of impeller-rub data were analysed and employed to predict the remnant life of pump based on estimation of health state. The results obtained were very encouraging and showed that the proposed prognosis system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.
Resumo:
Traffic congestion is an increasing problem with high costs in financial, social and personal terms. These costs include psychological and physiological stress, aggressivity and fatigue caused by lengthy delays, and increased likelihood of road crashes. Reliable and accurate traffic information is essential for the development of traffic control and management strategies. Traffic information is mostly gathered from in-road vehicle detectors such as induction loops. Traffic Message Chanel (TMC) service is popular service which wirelessly send traffic information to drivers. Traffic probes have been used in many cities to increase traffic information accuracy. A simulation to estimate the number of probe vehicles required to increase the accuracy of traffic information in Brisbane is proposed. A meso level traffic simulator has been developed to facilitate the identification of the optimal number of probe vehicles required to achieve an acceptable level of traffic reporting accuracy. Our approach to determine the optimal number of probe vehicles required to meet quality of service requirements, is to simulate runs with varying numbers of traffic probes. The simulated traffic represents Brisbane’s typical morning traffic. The road maps used in simulation are Brisbane’s TMC maps complete with speed limits and traffic lights. Experimental results show that that the optimal number of probe vehicles required for providing a useful supplement to TMC (induction loop) data lies between 0.5% and 2.5% of vehicles on the road. With less probes than 0.25%, little additional information is provided, while for more probes than 5%, there is only a negligible affect on accuracy for increasingly many probes on the road. Our findings are consistent with on-going research work on traffic probes, and show the effectiveness of using probe vehicles to supplement induction loops for accurate and timely traffic information.
Resumo:
We investigated the limits at which blur due to defocus, crossed-cylinder astigmatism, and trefoil became noticeable, troublesome or objectionable. Black letter targets (0.1, 0.35 and 0.6 logMAR) were presented on white backgrounds. Subjects were cyclopleged and had effectively 5 mm pupils. Blur was induced with a deformable, adaptive-optics mirror operating under open-loop conditions. Mean defocus blur limits of six subjects with uncorrected intrinsic higher-order ocular aberrations ranged from 0.18 ± 0.08 D (noticeable blur criterion, 0.1 logMAR) to 1.01 ± 0.27 D (objectionable blur criterion, 0.6 logMAR. Crossed-cylinder astigmatic blur limits were approximately 90% of those for defocus, but with considerable meridional influences. In two of the subjects, the intrinsic aberrations of the eye were subsequently corrected before the defocus and astigmatic blur were added. This resulted in only minor reductions in their blur limits. When assessed with trefoil blur and corrected intrinsic ocular aberrations, the ratio of objectionable to noticeable blur limits in these two subjects was much higher for trefoil (3.5) than for defocus (2.5) and astigmatism (2.2).
Resumo:
While spoken term detection (STD) systems based on word indices provide good accuracy, there are several practical applications where it is infeasible or too costly to employ an LVCSR engine. An STD system is presented, which is designed to incorporate a fast phonetic decoding front-end and be robust to decoding errors whilst still allowing for rapid search speeds. This goal is achieved through mono-phone open-loop decoding coupled with fast hierarchical phone lattice search. Results demonstrate that an STD system that is designed with the constraint of a fast and simple phonetic decoding front-end requires a compromise to be made between search speed and search accuracy.
Resumo:
A wide range of screening strategies have been employed to isolate antibodies and other proteins with specific attributes, including binding affinity, specificity, stability and improved expression. However, there remains no high-throughput system to screen for target-binding proteins in a mammalian, intracellular environment. Such a system would allow binding reagents to be isolated against intracellular clinical targets such as cell signalling proteins associated with tumour formation (p53, ras, cyclin E), proteins associated with neurodegenerative disorders (huntingtin, betaamyloid precursor protein), and various proteins crucial to viral replication (e.g. HIV-1 proteins such as Tat, Rev and Vif-1), which are difficult to screen by phage, ribosome or cell-surface display. This study used the β-lactamase protein complementation assay (PCA) as the display and selection component of a system for screening a protein library in the cytoplasm of HEK 293T cells. The colicin E7 (ColE7) and Immunity protein 7 (Imm7) *Escherichia coli* proteins were used as model interaction partners for developing the system. These proteins drove effective β-lactamase complementation, resulting in a signal-to-noise ratio (9:1 – 13:1) comparable to that of other β-lactamase PCAs described in the literature. The model Imm7-ColE7 interaction was then used to validate protocols for library screening. Single positive cells that harboured the Imm7 and ColE7 binding partners were identified and isolated using flow cytometric cell sorting in combination with the fluorescent β-lactamase substrate, CCF2/AM. A single-cell PCR was then used to amplify the Imm7 coding sequence directly from each sorted cell. With the screening system validated, it was then used to screen a protein library based the Imm7 scaffold against a proof-of-principle target. The wild-type Imm7 sequence, as well as mutants with wild-type residues in the ColE7- binding loop were enriched from the library after a single round of selection, which is consistent with other eukaryotic screening systems such as yeast and mammalian cell-surface display. In summary, this thesis describes a new technology for screening protein libraries in a mammalian, intracellular environment. This system has the potential to complement existing screening technologies by allowing access to intracellular proteins and expanding the range of targets available to the pharmaceutical industry.
Resumo:
Multi-output boost (MOB) converter is a novel DC-DC converter unlike the regular boost converter, has the ability to share its total output voltage and to have different series output voltage from a given duty cycle for low and high power applications. In this paper, discrete voltage control with inner hysteresis current control loop has been proposed to keep the simplicity of the control law for the double-output MOB converter, which can be implemented by a combination of analogue and logical ICs or simple microcontroller to constrain the output voltages of MOB converter at their reference voltages against variation in load or input voltage. The salient features of the proposed control strategy are simplicity of implementation and ease to extend to multiple outputs in the MOB converter. Simulation and experimental results are presented to show the validity of control strategy.
Resumo:
Cardiovascular assist devices are tested in mock circulation loops (MCLs) prior to animal and clinical testing. These MCLs rely on characteristics such as pneumatic parameters to create pressure and flow, and pipe dimensions to replicate the resistance, compliance and fluid inertia of the natural cardiovascular system. A mathematical simulation was developed in SIMULINK to simulate an existing MCL. Model validation was achieved by applying the physical MCL characteristics to the simulation and comparing the resulting pressure traces. These characteristics were subsequently altered to improve and thus predict the performance of a more accurate physical system. The simulation was successful in simulating the physical mock circulation loop, and proved to be a useful tool in the development of improved cardiovascular device test rigs.
Resumo:
In this thesis, a new technique has been developed for determining the composition of a collection of loads including induction motors. The application would be to provide a representation of the dynamic electrical load of Brisbane so that the ability of the power system to survive a given fault can be predicted. Most of the work on load modelling to date has been on post disturbance analysis, not on continuous on-line models for loads. The post disturbance methods are unsuitable for load modelling where the aim is to determine the control action or a safety margin for a specific disturbance. This thesis is based on on-line load models. Dr. Tania Parveen considers 10 induction motors with different power ratings, inertia and torque damping constants to validate the approach, and their composite models are developed with different percentage contributions for each motor. This thesis also shows how measurements of a composite load respond to normal power system variations and this information can be used to continuously decompose the load continuously and to characterize regarding the load into different sizes and amounts of motor loads.
Resumo:
Unmanned Aerial Vehicles (UAVs) are emerging as an ideal platform for a wide range of civil applications such as disaster monitoring, atmospheric observation and outback delivery. However, the operation of UAVs is currently restricted to specially segregated regions of airspace outside of the National Airspace System (NAS). Mission Flight Planning (MFP) is an integral part of UAV operation that addresses some of the requirements (such as safety and the rules of the air) of integrating UAVs in the NAS. Automated MFP is a key enabler for a number of UAV operating scenarios as it aids in increasing the level of onboard autonomy. For example, onboard MFP is required to ensure continued conformance with the NAS integration requirements when there is an outage in the communications link. MFP is a motion planning task concerned with finding a path between a designated start waypoint and goal waypoint. This path is described with a sequence of 4 Dimensional (4D) waypoints (three spatial and one time dimension) or equivalently with a sequence of trajectory segments (or tracks). It is necessary to consider the time dimension as the UAV operates in a dynamic environment. Existing methods for generic motion planning, UAV motion planning and general vehicle motion planning cannot adequately address the requirements of MFP. The flight plan needs to optimise for multiple decision objectives including mission safety objectives, the rules of the air and mission efficiency objectives. Online (in-flight) replanning capability is needed as the UAV operates in a large, dynamic and uncertain outdoor environment. This thesis derives a multi-objective 4D search algorithm entitled Multi- Step A* (MSA*) based on the seminal A* search algorithm. MSA* is proven to find the optimal (least cost) path given a variable successor operator (which enables arbitrary track angle and track velocity resolution). Furthermore, it is shown to be of comparable complexity to multi-objective, vector neighbourhood based A* (Vector A*, an extension of A*). A variable successor operator enables the imposition of a multi-resolution lattice structure on the search space (which results in fewer search nodes). Unlike cell decomposition based methods, soundness is guaranteed with multi-resolution MSA*. MSA* is demonstrated through Monte Carlo simulations to be computationally efficient. It is shown that multi-resolution, lattice based MSA* finds paths of equivalent cost (less than 0.5% difference) to Vector A* (the benchmark) in a third of the computation time (on average). This is the first contribution of the research. The second contribution is the discovery of the additive consistency property for planning with multiple decision objectives. Additive consistency ensures that the planner is not biased (which results in a suboptimal path) by ensuring that the cost of traversing a track using one step equals that of traversing the same track using multiple steps. MSA* mitigates uncertainty through online replanning, Multi-Criteria Decision Making (MCDM) and tolerance. Each trajectory segment is modeled with a cell sequence that completely encloses the trajectory segment. The tolerance, measured as the minimum distance between the track and cell boundaries, is the third major contribution. Even though MSA* is demonstrated for UAV MFP, it is extensible to other 4D vehicle motion planning applications. Finally, the research proposes a self-scheduling replanning architecture for MFP. This architecture replicates the decision strategies of human experts to meet the time constraints of online replanning. Based on a feedback loop, the proposed architecture switches between fast, near-optimal planning and optimal planning to minimise the need for hold manoeuvres. The derived MFP framework is original and shown, through extensive verification and validation, to satisfy the requirements of UAV MFP. As MFP is an enabling factor for operation of UAVs in the NAS, the presented work is both original and significant.