936 resultados para Graphite.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

C-phycocyanin (C-PC) was isolated from blue-green alga spirulina platensis. A scanning tunneling microscope (STM) has been used to investigate its three-dimensional structure. The samples were dialyzed before the STM experiment, and then deposited on highly oriented pyrolytic graphite (HOPG). The measurement was carried out in ambient condition at room temperature. STM images showed that C-phycocyanin was uniformly distributed on solid-state substrate HOPG. The shape of C-phycocyanin is disklike with a channel in the center. It is concluded that STM has great potential to observe the structure of biliproteins and phycobilisomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The term black carbon is used to describe a relatively inert and ubiquitous form of carbon, comprising a range of materials from char and charcoal to element or graphite carbon produced by the incomplete combustion of fossil fuels and biomass. Due to its inertness, the BC in soils, lacustrine and marine sediments and ice can persist over a long period of time. So BC signatures in geological deposits can be used as evidence of natural fires happened in their surroundings. To study the temporal and spatial changes in paleofires over the Chinese Loess Plateau, black carbon concentrations were analyzed on the loess-paleosol samples from three sections including Lijiayuan, Lingtai and Weinan along a north-south transect. Using the orbitally-tuned time-scales of the sections, the black carbon sedimentation rates (BCSR) were calculated. Meanwhile, with objective to document fine resolution fire history during late Pleistocene and Holocene periods, we measured BC concentrations of loess-paleosol samples at dense sampling intervals since 28 ka BP. in Lijiayuan section. The BCSR of the samples were also calculated. In addition, we also conducted observation on black carbon morphologies to examine their sources. Based on the results, the following remarks can be concluded: 1. In the last two glacial cycles, the BCSR values in glacial periods are 2-3 times higher than in interglacial periods, and the BCSR variability has a relatively strong precession-associated 23 kyr period, suggesting that the glacial cold-dry climate conditions were apt to induce natural fires over the Loess Plateau, 2. Comparison of the BCSR records among the three loess sections demonstrates that natural fire occurrence was much more intensive and frequent in the northern and interglacial periods. 3. Pollen records and carbon isotope analyses of organic matter have shown that the Loess Plateau was covered by an Artemisia-dominated grassland vegetation both during glacial and interglacial periods, So grassland fires were the dominant fire types in the Plateau, which is also corroborated by the observation of black carbon morphology. In addition, statistics and comparison of BC particle sizes among the sections demonstrated that BC records probably reflected local fires. 4. According to previous studies about the effect of fires on vegetation changes, we considered that the fires might play an important role in the expansion of grassland during glacial periods, besides the control of climate changes. 5. The high resolution black carbon record in Lijiayuan section has shown that the BCSR series well documented Younger dryas (YD) and Heinrich (HI和H2) events, suggesting that natural fires in the northwestern part of Chinese Loess Plateau could regularly respond to the millennial scale climate oscillation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The properties and formation of nanotubes have been extensively studied, but very few deal with the catalytic production mechanism of nanotubes. Two different techniques, thermogravimetric analysis and UV-Raman, have been applied to analyse the carbon deposition by catalysed decomposition of acetylene over an iron-based catalyst. The nature of the produced carbon materials depends on reaction temperature. Also, TEM allows identification of carbon nanotubes, encapsulated particles, and other nanostructures, while UV-Raman confirms its graphitic and graphite-like nature. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The catalytic activity, thermal stability and carbon deposition of various modified NiO/gamma-Al2O3 and unmodified NiO/gamma-Al2O3 catalysts were investigated with a flow reactor, XRD, TG and UVRRS analysis. The activity and selectivity of the NiO/gamma-Al2O3 catalyst showed little difference from those of the modified nickel-based catalysts. However, modification with alkali metal oxide (Li, Na, K) and rare earth metal oxide (La, Ce, Y, Sm) can improve the thermal stability of the NiO/gamma-Al2O3 and enhance its ability to suppress carbon deposition during the partial oxidation of ethane (POE). The carbon deposition contains graphite-like species that were detected by UVRRS. The nickel-based catalysts modified by alkali metal oxide and rare earth metal oxide have excellent catalytic activities (C2H6 conversion of similar to 100%, CO selectivity of similar to 94%, 7x 10(4) l/(kg h), 1123 K), good thermal stability and carbon-deposition resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated growth of silver clusters on three different, i.e. normally cleaved, thermally oxidized and Ar+ ion sputtered highly oriented pyrolytic graphite (HOPG), surfaces. Scanning tunneling microscopy (STM) observations reveal that uniformly sized and spaced Ag clusters only form on the sputtered surface. Ar+ sputtering introduces relatively uniform surface defects compared to other methods. These defects are found to serve as preferential sites for Ag cluster nucleation, which leads to the formation of uniform clusters. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The deposition of ultrasonic energy in tissue can cause tissue damage due to local heating. For pressures above a critical threshold, cavitation will occur in tissue and bubbles will be created. These oscillating bubbles can induce a much larger thermal energy deposition in the local region. Traditionally, clinicians and researchers have not exploited this bubble-enhanced heating since cavitation behavior is erratic and very difficult to control. The present work is an attempt to control and utilize this bubble-enhanced heating. First, by applying appropriate bubble dynamic models, limits on the asymptotic bubble size distribution are obtained for different driving pressures at 1 MHz. The size distributions are bounded by two thresholds: the bubble shape instability threshold and the rectified diffusion threshold. The growth rate of bubbles in this region is also given, and the resulting time evolution of the heating in a given insonation scenario is modeled. In addition, some experimental results have been obtained to investigate the bubble-enhanced heating in an agar and graphite based tissue- mimicking material. Heating as a function of dissolved gas concentrations in the tissue phantom is investigated. Bubble-based contrast agents are introduced to investigate the effect on the bubble-enhanced heating, and to control the initial bubble size distribution. The mechanisms of cavitation-related bubble heating are investigated, and a heating model is established using our understanding of the bubble dynamics. By fitting appropriate bubble densities in the ultrasound field, the peak temperature changes are simulated. The results for required bubble density are given. Finally, a simple bubbly liquid model is presented to estimate the shielding effects which may be important even for low void fraction during high intensity focused ultrasound (HIFU) treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For high-intensity focused ultrasound (HIFU) to continue to gain acceptance for cancer treatment it is necessary to understand how the applied ultrasound interacts with gas trapped in the tissue. The presence of bubbles in the target location have been thought to be responsible for shielding the incoming pressure and increasing local heat deposition due to the bubble dynamics. We lack adequate tools for monitoring the cavitation process, due to both limited visualization methods and understanding of the underlying physics. The goal of this project was to elucidate the role of inertial cavitation in HIFU exposures in the hope of applying noise diagnostics to monitor cavitation activity and control HIFU-induced cavitation in a beneficial manner. A number of approaches were taken to understand the relationship between inertial cavitation signals, bubble heating, and bubble shielding in agar-graphite tissue phantoms. Passive cavitation detection (PCD) techniques were employed to detect inertial bubble collapses while the temperature was monitored with an embedded thermocouple. Results indicate that the broadband noise amplitude is correlated to bubble-enhanced heating. Monitoring inertial cavitation at multiple positions throughout the focal region demonstrated that bubble activity increased prefocally as it diminished near the focus. Lowering the HIFU duty cycle had the effect of maintaining a more or less constant cavitation signal, suggesting the shielding effect diminished when the bubbles had a chance to dissolve during the HIFU off-time. Modeling the effect of increasing the ambient temperature showed that bubbles do not collapse as violently at higher temperatures due to increased vapor pressure inside the bubble. Our conclusion is that inertial cavitation heating is less effective at higher temperatures and bubble shielding is involved in shifting energy deposition at the focus. The use of a diagnostic ultrasound imaging system as a PCD array was explored. Filtering out the scattered harmonics from the received RF signals resulted in a spatially- resolved inertial cavitation signal, while the amplitude of the harmonics showed a correlation with temperatures approaching the onset of boiling. The result is a new tool for detecting a broader spectrum of bubble activity and thus enhancing HIFU treatment visualization and feedback.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is concerned with an investigation of the anodic behaviour of ruthenium and iridium in aqueous solution and particularly of oxygen evolution on these metals. The latter process is of major interest in the large-scale production of hydrogen gas by the electrolysis of water. The presence of low levels of ruthenium trichloride ca. 10-4 mol dm-3 in acid solution give a considerable increase in the rate of oxygen evolution from platinum and gold, but not graphite, anodes. The mechanism of this catalytic effect was investigated using potential step and a.c. impedance technique. Earlier suggestions that the effect is due to catalysis by metal ions in solution were proved to be incorrect and it was shown that ruthenium species were incorporated into the surface oxide film. Changes in the oxidation state of these ruthenium species is probably responsible for the lowering of the oxygen overvoltage. Both the theoretical and practical aspects of the reaction were complicated by the fact that at constant potential the rates of both the catalysed and the uncatalysed oxygen evolution processes exhibit an appreciable, continuous decrease with either time or degree of oxidation of the substrate. The anodic behaviour of iridium in the oxide layer region has been investigated using conventional electrochemical techniques such as cyclic voltammetry. Applying a triangular voltage sweep at 10 Hz, 0.01 to 1.50V increases the amount of electric charge which the surface can store in the oxide region. This activation effect and the mechanism of charge storage is discussed in terms of both an expanded lattice theory for oxide growth on noble metals and a more recent theory of irreversible oxide formation with subsequent stoichiometry changes. The lack of hysteresis between the anodic and cathodic peaks at ca. 0.9 V suggests that the process involved here is proton migration in a relatively thick surface layer, i.e. that the reaction involved is some type of oxide-hydroxide transition. Lack of chloride ion inhibition in the anodic region also supports the irreversible oxide formation theory; however, to account for the hydrogen region of the potential sweep a compromise theory involving partial reduction of the outer regions of iridium oxide film is proposed. The loss of charge storage capacity when the activated iridium surface is anodized for a short time above ca. 1.60 V is attributed to loss by corrosion of the outer active layer from the metal surface. The behaviour of iridium at higher anodic potentials in acid solution was investigated. Current-time curves at constant potential and Tafel plots suggested that a change in the mechanism of the oxygen evolution reaction occurs at ca. 1.8 V. Above this potential, corrosion of the metal occurred, giving rise to an absorbance in the visible spectrum of the electrolyte (λ max = 455 nm). It is suggested that the species involved was Ir(O2)2+. A similar investigation in the case of alkaline electrolyte gave no evidence for a change in mechanism at 1.8 V and corrosion of the iridium was not observed. Oxygen evolution overpotentials were much lower for iridium than for platinum in both acidic and alkaline solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The idealized system of an atomically flat metallic surface [highly oriented pyrolytic graphite (HOPG)] and an organic monolayer (porphyrin) was used to determine whether the dielectric function and associated properties of thin films can be accessed with scanning-near-field scanning optical microscopy (s-NSOM). Here, we demonstrate the use of harmonics up to fourth order and the polarization dependence of incident light to probe dielectric properties on idealized samples of monolayers of organic molecules on atomically smooth substrates. An analytical treatment of light/sample interaction using the s-NSOM tip was developed in order to quantify the dielectric properties. The theoretical analysis and numerical modeling, as well as experimental data, demonstrate that higher order harmonic scattering can be used to extract the dielectric properties of materials with tens of nanometer spatial resolution. To date, the third harmonic provides the best lateral resolution (∼50 nm) and dielectric constant contrast for a porphyrin film on HOPG. © 2009 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The establishment of conductive graphene-molecule-graphene junction is investigated through first-principles electronic structure calculations and quantum transport calculations. The junction consists of a conjugated molecule connecting two parallel graphene sheets. The effects of molecular electronic states, structure relaxation, and molecule-graphene contact on the conductance of the junction are explored. A conductance as large as 0.38 conductance quantum is found achievable with an appropriately oriented dithiophene bridge. This work elucidates the designing principles of promising nanoelectronic devices based on conductive graphene-molecule-graphene junctions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context : Stress fractures are one of the most common injuries in sports, accounting for approximately 10% of all overuse injuries. Treatment of fifth metatarsal stress fractures involves both surgical and nonsurgical interventions. Fifth metatarsal stress fractures are difficult to treat because of the risks of delayed union, nonunion, and recurrent injuries. Most of these injuries occur during agility tasks, such as those performed in soccer, basketball, and lacrosse. Objective : To examine the effect of a rigid carbon graphite footplate on plantar loading during 2 agility tasks. Design :  Crossover study. Setting : Laboratory. Patients or Other Participants : A total of 19 recreational male athletes with no history of lower extremity injury in the past 6 months and no previous metatarsal stress fractures were tested. Main Outcome Measure(s) :  Seven 45° side-cut and crossover-cut tasks were completed in a shoe with or without a full-length rigid carbon plate. Testing order between the shoe conditions and the 2 cutting tasks was randomized. Plantar-loading data were recorded using instrumented insoles. Peak pressure, maximum force, force-time integral, and contact area beneath the total foot, the medial and lateral midfoot, and the medial, middle, and lateral forefoot were analyzed. A series of paired t tests was used to examine differences between the footwear conditions (carbon graphite footplate, shod) for both cutting tasks independently (α = .05). Results : During the side-cut task, the footplate increased total foot and lateral midfoot peak pressures while decreasing contact area and lateral midfoot force-time integral. During the crossover-cut task, the footplate increased total foot and lateral midfoot peak pressure and lateral forefoot force-time integral while decreasing total and lateral forefoot contact area. Conclusions : Although a rigid carbon graphite footplate altered some aspects of the plantar- pressure profile during cutting in uninjured participants, it was ineffective in reducing plantar loading beneath the fifth metatarsal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gray Cancer Institute ultrasoft X-ray microprobe was used to quantify the bystander response of individual V79 cells exposed to a focused carbon K-shell (278 eV) X-ray beam. The ultrasoft X-ray microprobe is designed to precisely assess the biological response of individual cells irradiated in vitro with a very fine beam of low-energy photons. Characteristic C-K X rays are generated by a focused beam of 10 keV electrons striking a graphite target. Circular diffraction gratings (i.e. zone plates) are then employed to focus the X-ray beam into a spot with a radius of 0.25 mum at the sample position. Using this microbeam technology, the correlation between the irradiated cells and their nonirradiated neighbors can be examined critically. The survival response of V79 cells irradiated with a C-K X-ray beam was measured in the 0-2-Gy dose range. The response when all cells were irradiated was compared to that obtained when only a single cell was exposed. The cell survival data exhibit a linear-quadratic response when all cells were targeted (with evidence for hyper-sensitivity at low doses). When only a single cell was targeted within the population, 10% cell killing was measured. In contrast to the binary bystander behavior reported by many other investigations, the effect detected was initially dependent on dose (200 mGy). In the low-dose region (

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel wide angle spectrometer has been implemented with a highly oriented pyrolytic graphite crystal coupled to an image plate. This spectrometer has allowed us to look at the energy resolved spectrum of scattered x rays from a dense plasma over a wide range of angles ( ~ 30°) in a single shot. Using this spectrometer we were able to observe the temporal evolution of the angular scatter cross section from a laser shocked foil. A spectrometer of this type may also be useful in investigations of x-ray line transfer from laser-plasmas experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Classification of the active surface sites of platinum catalysts responsible for low temperature N2O decomposition, in terms of steps, kinks and terraces, has been achieved by controlled addition of bismuth to as-received platinum/graphite catalysts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The liquid phase selective hydrogenation of cinnamaldehyde to cinnamyl alcohol has been carried out over a graphite-supported iridium catalyst. The effect of reaction parameters such as temperature, pressure, concentration of reactant, the effect of addition of product to the feed and pre-reduction of the catalyst were studied. In situ pre-reduction of the catalyst with hydrogen had a very significant enhancing effect on the conversion of cinnamaldehyde and selectivity of the catalyst to cinnamyl alcohol. Kinetic analysis of the pre-reduced catalyst showed that the reaction is zero order with respect to cinnamaldehyde and first order with respect to hydrogen. The reaction follows an Arrhenius behaviour with an activation energy of 37 kJ mol(-1). Detailed analysis of the reaction showed that hydrogenation of the C=C double bond to give hydrocinnamaldehyde predominantly occurred at low conversions of cinnamaldehyde (